
JNBridge R&D Showcase

1

JNBridge R&D Showcase
Azure Logic Apps Connector for JMS

JNBridge R&D Showcase

Create a Custom Azure Logic App Connector using the JNBridge
JMS Adapter for .NET
Introduction

An Azure Logic App is a cloud service that automates and orchestrates tasks, business processes
and workflows enabling integration of data, systems and services across the enterprise. Visually, a
Logic App is a workflow built by linking together functional components such as connectors, flow
controls and data conversion in the Azure portal. Here’s the Logic App that will be built in this R&D
Showcase kit. It will consume a JMS text message from a queue, modify the text from that message
and then publish a text message to another queue.

The key component in this workflow is the Azure Logic App Custom Connector that provides
actions that map to JMS operations like consuming and publishing messages. This kit will show the
reader how to build a custom connector using the JNBridge JMS Adapter for .NET to provide a
back-end WCF service hosted in IIS. The API exposed by the service is called by the custom
connector.

2

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

This kit is a continuation of two previous blog posts, Creating WCF Services using the .NET JMS
Adapter–Part 1 and Creating WCF Services using the .NET JMS Adapter–Part 2. The second blog in
the series will be our starting point. In that blog, the JMS Adapter for .NET was used to create a
WCF Channel Listener service that consumed messages from a JMS destination. We’ll add another
WCF Service similar to that built in the first blog post. It is the new service that will be used by the
custom connector.

Overview

A Logic App Custom Connector is simply a graphical interface to any service that exposes a
REST API. Since the WCF based service in this example exposes a SOAP interface, this example
makes use of the SOAP-to-REST protocol translation feature in the Custom Connector
architecture. The service is hosted on-premise in IIS, though the service could just as easily be
hosted in Azure. Likewise, the on-premise JMS broker could also be hosted in Azure. The Azure
On-Premise Data Gateway provides secure access to on-premise services, but would not be
necessary if the WCF service were hosted in Azure.

The WcfJmsListenerService uses the .NET JMS Adapter to consume messages from the JMS
broker and store them in memory. This service does not expose an interface. The WcfJmsSvc
service exposes a SOAP interface to consume the stored messages and publish new messages,
using the .NET Adapter, directly to the JMS broker.

http://jnbridge.com/blog/deploying-net-jms-adapter-iis-part-1
http://jnbridge.com/blog/deploying-net-jms-adapter-iis-part-1
https://jnbridge.com/blog/creating-wcf-services-using-net-jms-adapter-part-2

3

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Prerequisites

Building this example requires the JNBridge JMS Adapter for .NET and Visual Studio 2015.
Deployment requires IIS 7.5, or later, and AppFabric for Windows Server. As before in Part 1 &
2, ActiveMQ will be the JMS implementation. Building the custom connector requires an Azure
account and an Azure Resource Group to contain all the resources. While the WCF services can be
hosted in Azure along with the ActiveMQ implementation, this example will use a local IIS and
ActiveMQ broker. So the Logic App Connector can access the WCF service, it is necessary to install
the Azure On-Premise Data Gateway for Logic Apps on the IIS machine. Here’s an excellent blog
post that describes how to install and configure the gateway on the local machine. Finally, it might
be useful to peruse Parts 1 & 2 in this blog series. The code in this kit is available for download
here.

Create the Outbound Binding

Using Visual Studio 2015, open the WCF Service project created in Part 2. Open the Add Adapter
Service Reference dialog from Visual Studio’s Project menu. This dialog consumes any WCFLOB
adapter allowing the developer to choose individual messaging operations. As in Part 1 of this blog
series, remember to use the Configure Adapter dialog to choose ActiveMQ as the JMS
implementation and to toggle the property, Work Off Line, to true. As shown, a single generic
operation has been chosen, SendText(). This operation will publish a JMS Text message to a
specified JMS queue. In addition, the field, Filename prefix, contains the prefix, WcfJmsPublisher.

http://jnbridge.com/download/download-jms-adapter-net
http://www.microsoft.com/en-us/download/details.aspx?id=27115
http://activemq.apache.org/download.html
https://azure.microsoft.com/en-us/get-started/
https://www.codit.eu/blog/installing-and-configuring-on-premise-data-gateway-for-logic-apps/
https://www.codit.eu/blog/installing-and-configuring-on-premise-data-gateway-for-logic-apps/
https://jnbridge.com/labfiles/JNBridge_Azure_Logic_Apps_Connector_JMS.zip
https://jnbridge.com/blog/creating-wcf-services-using-net-jms-adapter-part-2

4

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Clicking OK will create the source file, WcfJmsPublisherClient.cs, and modify the Web.config file.
Note that Visual Studio will immediately complain that the default namespace has become
polluted because of two different interfaces with the same name, JNBridgeJMSAdapter. The simplest
solution is to add a namespace declaration to encapsulate the interface source in the file,
WcfJmsPublisherClient.cs. Edit the file, adding the namespace, WcfJmsPublisher, as shown below.

Create a Second WCF Service

There is already one WCF service in this implementation; however, that service is a special inbound
channel listener that consumes JMS Messages from a queue. A second service is required to
expose an interface that will be consumed by the Custom Logic App Connector. Using Visual
Studio, add a new WCF service to the project named WcfJmsSvc. Visual Studio will create three
source files, IWcfJmsSvc.cs, WcfJmsSvc.svc.cs and WcfJmsSvc.svc. It will also modify the Web.config
file. Edit the service interface definition in IWcfJmsSvc.cs. Note that this service declares a different
Service Contract namespace than the Channel Listener contract in the class WcfJmsListenerService.

namespace WcfJmsPublisher
{
 [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")]
 [System.ServiceModel.ServiceContractAttribute(
 Namespace = "jms://JNBridge.JMSAdapter",
 ConfigurationName = "JNBridgeJmsAdapter")]
 public interface JNBridgeJmsAdapter {...}

 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.CodeDom.Compiler.GeneratedCodeAttribute("System.ServiceModel", "4.0.0.0")]
 public partial class JNBridgeJmsAdapterClient :
 System.ServiceModel.ClientBase<JNBridgeJmsAdapter>, JNBridgeJmsAdapter {...}
}

namespace WcfJmsListener
{
 [ServiceContract(Namespace = "jms://JNBridge.JMSAdapter/Service")]
 interface IWcfJmsSvc
 {
 [OperationContract]
 bool MessageAvailable();

 [OperationContract]
 JMSMessage GetMessage();

 [OperationContract]
 void PublishMessage(string destination, string text);
 }
}

5

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Edit the interface implementation file, WcfJmsSvc.svc.cs. Notice that a Service Behavior attribute
declaring the same namespace used in the interface’s Service Contract attribute decorates the
implementation class. The namespaces in the attributes are necessary to separate the two WCF
services running in one process. In addition, a simple, and serializable, data class is declared that
will contain the JMS Message header and message body. The class, JMSMessageHeader, is defined
in the source file, WcfJmsListenerInterface.cs, created by the JMS Adapter for .NET as part of the
Channel Listener implementation.

namespace WcfJmsListener
{
 [ServiceBehavior(Namespace = "jms://JNBridge.JMSAdapter/Service")]
 public class WcfJmsSvc : IWcfJmsSvc
 {
 JNBridgeJmsAdapterClient client = null;

 public bool MessageAvailable()
 {
 return (WcfJmsListenerService.messages.IsEmpty == false);
 }

 public JMSMessage GetMessage()
 {
 JMSMessage aMessage;
 WcfJmsListenerService.messages.TryDequeue(out aMessage);
 return aMessage;
 }

 public void PublishMessage(string destination, string text)
 {
 if (client == null)
 {
 client = new JNBridgeJmsAdapterClient();
 }
 client.SendText(destination, text);
 }
 }

 public class JMSMessage
 {
 private string messageText;
 private JMSMessageHeader messageHeader;

 public string Text
 {
 get { return messageText; }
 set { this.messageText = value; }
 }

 public JMSMessageHeader Header
 {
 get { return messageHeader; }
 set { this.messageHeader = value; }
 }
 }
}

6

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Edit the original Channel Listener implementation source file, WcfJmsListenerService.cs. Orginally,
the listener callback method, OnReceiveAnnotatedTextFromQueue(), just used trace statements to
dump the contents of the consumed JMS Text Message. The new source creates an instance of the
data class, JMSMessage, and adds it to a FIFO collection. Because of the multi-threaded nature of
the WCF Services, the thread-safe collection class ConcurrentQueue is used as the FIFO.

namespace WcfJmsListener
{
 public class WcfJmsListenerService : JNBridgeJmsAdapter
 {
 public static ConcurrentQueue<JMSMessage> messages =
 new ConcurrentQueue<JMSMessage>();

 public virtual void OnReceiveAnnotatedTextFromQueue(string name,
 string text,
 jnbridge.jmsadapter.JMSMessageHeader messageHeader)
 {

 JMSMessage aMessage = new JMSMessage();
 aMessage.Header = messageHeader;
 aMessage.Text = text;
 messages.Enqueue(aMessage);
 }
 }
}

7

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Now it’s time to edit the Web.config file. The configuration contains two WCF services and a client
endpoint.

<?xml version="1.0"?>
<configuration>
 <appSettings>
 <add key="aspnet:UseTaskFriendlySynchronizationContext" value="true" />
 </appSettings>
 <system.web>
 <compilation debug="true" targetFramework="4.6.1" />
 <httpRuntime targetFramework="4.6.1"/>
 </system.web>
 <system.serviceModel>
 <!-- This is the "outbound" client that contains the operation SendText() -->
 <client>
 <endpoint address="jms://localhost:61616/"
 binding="JNBridgeDotNetJMSAdapterBinding"
 bindingConfiguration="JMSAdapterBinding"
 contract="JNBridgeJmsAdapter"
 name="JMSAdapterBinding_JNBridgeJmsAdapter" />
 </client>
 <extensions>
 <behaviorExtensions>

 <add name="inboundActionElement"
 type="Microsoft.ServiceModel.Channels.InboundActionElement,
 Microsoft.ServiceModel.Channels, Version=3.0.0.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35" />
 </behaviorExtensions>
 </extensions>
 <services>
 <!--Channel Listener service that consumes messages from the queue, dynamicQueues/exampleQueue -->
 <service name="WcfJmsListener.WcfJmsListenerService">
 <endpoint address="jms://localhost:61616/"
 behaviorConfiguration="InboundActionEndpointBehavior"
 binding="JNBridgeDotNetJMSAdapterBinding"
 bindingConfiguration="JMSAdapterBinding"
 contract="JNBridgeJmsAdapter" />
 </service>
 <!--This is the WCF service that exposes the operations used by the Logic App Connector-->
 <!--Note that the transport protocol is basicHttpBinding-->
 <service behaviorConfiguration="WcfJmsSvcBehavior" name="WcfJmsListener.WcfJmsSvc">
 <endpoint address="" binding="basicHttpBinding" bindingConfiguration=""
 contract="WcfJmsListener.IWcfJmsSvc" />
 <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" />
 </service>
 </services>
 <bindings>
 <JNBridgeDotNetJMSAdapterBinding>
 <binding BcelPath="C:\Program Files\JNBridge\JMSAdapters\jnbin\bcel-5.1-jnbridge.jar"
 JnbCorePath="C:\Program Files\JNBridge\JMSAdapters\jnbin\jnbcore.jar"
 name="JMSAdapterBinding" AcknowledgeMode="AUTO_ACKNOWLEDGE"
 SecurityAuthentication="none" TopicConnectionFactory="ConnectionFactory"
 QueueConnectionFactory="ConnectionFactory"
 ClassPath="C:\Program Files\apache-activemq-5.13.3\activemq-all-5.13.3.jar;"
 JvmPath="C:\Program Files\Java\jre1.8.0_77\bin\server\jvm.dll"
 JMSScheme="tcp"
 InitialContextFactory="org.apache.activemq.jndi.ActiveMQInitialContextFactory"
 JmsVendor="ActiveMQ" MessageSelector="" DurableSubscription=""
 QueueName="dynamicQueues/exampleQueue" TopicName="" OffLine="false"
 TransactionEnlistment="false" RunTime="true" BridgeType="Shared Memory"
 HostName="" PortNumber="" UseSSL="false" JVMArgs="" InboundPollPeriod="10"
 CustomConnectionString="" JmsVersion="JMS 1.1" />
 </JNBridgeDotNetJMSAdapterBinding>
 </bindings>
 <behaviors>
 <endpointBehaviors>
 <behavior name="InboundActionEndpointBehavior">
 <inboundActionElement />
 </behavior>
 </endpointBehaviors>
 <serviceBehaviors>
 <behavior name="WcfJmsSvcBehavior">
 <serviceMetadata httpGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 <behavior name="">
 <serviceMetadata httpGetEnabled="true" httpsGetEnabled="true" />
 <serviceDebug includeExceptionDetailInFaults="false" />
 </behavior>
 </serviceBehaviors>
 </behaviors>
 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" />
 </system.serviceModel>
 <system.webServer>
 <modules runAllManagedModulesForAllRequests="true"/>
 <directoryBrowse enabled="true"/>
 </system.webServer>
</configuration>

8

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

The resulting WCF service is composed of two WCF services, one that does not expose a SOAP
interface and one that does. The Channel Listener that consumes JMS messages simply stores them
in memory using a FIFO. The exposed service uses the basicHttpBinding, a SOAP transport using
XML. It is not REST/JSON.

The final coding task is the publishing configuration, WcfJmsSvcPublish.pubxml, that will publish the
two services to IIS. One final step is to include the JMS Adapter for .NET component, jnbproxies.dll,
in the project with Copy Always enabled. The assembly can be found in
…\JMSAdapters\DotNet\bin\jms11.

After the services have been published to IIS, remember that the Channel Listener service must be
configured for Auto-Start using AppFabric for Windows Server. Please refer to the section titled,
Configuring AppFabric for Windows Server in the previous blog, Creating WCF Services using the
.NET JMS Adapter–Part 2.

<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
 <PropertyGroup>
 <WebPublishMethod>MSDeploy</WebPublishMethod>
 <LastUsedBuildConfiguration>Debug</LastUsedBuildConfiguration>
 <LastUsedPlatform>Any CPU</LastUsedPlatform>
 <SiteUrlToLaunchAfterPublish />
 <LaunchSiteAfterPublish>True</LaunchSiteAfterPublish>
 <ExcludeApp_Data>False</ExcludeApp_Data>
 <MSDeployServiceURL>localhost</MSDeployServiceURL>
 <DeployIisAppPath>Default Web Site/WcfJmsSvc</DeployIisAppPath>
 <RemoteSitePhysicalPath />
 <SkipExtraFilesOnServer>True</SkipExtraFilesOnServer>
 <MSDeployPublishMethod>InProc</MSDeployPublishMethod>
 <EnableMSDeployBackup>False</EnableMSDeployBackup>
 <UserName />
 <_SavePWD>False</_SavePWD>
 <ADUsesOwinOrOpenIdConnect>False</ADUsesOwinOrOpenIdConnect>
 </PropertyGroup>
</Project>

https://jnbridge.com/blog/creating-wcf-services-using-net-jms-adapter-part-2
https://jnbridge.com/blog/creating-wcf-services-using-net-jms-adapter-part-2

9

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Building a Custom Logic App Connector

Most of the hard work is done because building the connector relies on the WSDL that describes
the service that was just deployed to IIS. Despite the fact that the exposed API uses SOAP/XML, the
WSDL description is used by the Custom Connector to facilitate a SOAP to REST/JSON conversion
using Liquid templates.The best way to obtain the WSDL is to use the IIS Management Console to
browse the service. Doing so will display the directory structure of the service.

By simply clicking on the file, WcfJmsSvc.svc, the default page is displayed. Click on the circled link
to generate the WSDL and save it to a file named WcfJmsSvc.wsdl.

https://shopify.github.io/liquid/

10

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Now it’s time to open the Azure portal and create a Custom Logic App Connector. The first step is
to add a new resource of type Logic App Custom Connector. In the Azure Dashboard, click on the
Add link to get the New form and type in the string Logic App Custom Connector in the search field.
Click on the icon for the custom connector to display the Create form. Remember that all
resources—the connector, the Logic App and the On-Premise Data Gateway—must all be in the
same resource group.

Once the new resource has been created, open the custom connector console and click on the Edit
link. In the form, How do you want to create your connector?, choose SOAP as the API endpoint and
SOAP to REST as the call mode. Choose Upload WSDL from File and click on the browse icon and
navigate to the WSDL file created from the WCF service, WcfJMSSvc. In the General information
form let everything default but make sure to check the box, Connect via on-premises data gateway.

11

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

The next step is to click on the link Definition, bypassing the Security configuration as there will be
no secure access in this example. Each of the operations exposed by the WCF service,
MessageAvailable, GetMessage and PublishMessage must have a Summary and Description entered.
In addition, both MessageAvailable and GetMessage must have the request body removed as they
have no arguments. PublishMessage must have the response body set to type string even though
the return type is void.

12

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

When completed, click on the link Update Connector.

13

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Building a Logic App to Test the Connector

The following screen shot shows the Logic App that will test the connector

The Logic App is triggered by a Recurrence object that fires every minute. The first object to
execute is the connector operation MessageAvailable which will return false if no JMS message is
available to be consumed. If a message is available, the connector returns true. The output of the
MessageAvailable operation is tested by the Condition object. If the result is false, nothing happens.
If the result is true, then the connector operation GetMessage is executed. The output of
GetMessage is a JSON document that is the serialized data class JMSMessage defined in the source
file, WcfJmsSvc.svc.cs.

14

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

The arguments to the connector operation, PublishMessage, is a queue named,
NemOutboundQueue and the text that is sent is a concatenation of the incoming text, “Hello”, and
the string “ World!”. Here is the published JMS Text Message in the queue, NemInboundQueue.

{

 "statusCode": 200,

 "headers": {

 "Transfer-Encoding": "chunked",

 "Vary": "Accept-Encoding",

 "x-ms-request-id": "27ef62a0-8883-4d57-80ae-e3ccafb50389",

 "Cache-Control": "private",

 "Date": "Wed, 05 Sep 2018 23:34:01 GMT",

 "Set-Cookie":

"ARRAffinity=29e552cea7db23196f7ffa644003eaaf39bc8eb6dd811911f669d13ab7424faf;Path=/;HttpOnly;Domain=gate

wayconnector-eastus.logic-ase-eastus.p.azurewebsites.net",

 "X-AspNet-Version": "4.0.30319",

 "X-Powered-By": "ASP.NET,ASP.NET",

 "Content-Type": "application/json",

 "Content-Length": "671"

 },

 "body": {

 "getMessageResponse": {

 "getMessageResult": {

 "header": {

 "properties": [],

 "jmsCorrelationID": "CorrelationID",

 "jmsCorrelationIDAsBytes": "",

 "jmsDeliveryMode": 1,

 "jmsExpiration": 0,

 "jmsMessageID": "ID:Medtner-6293-1536082484859-4:4:1:1:6",

 "jmsPriority": 0,

 "jmsRedelivered": false,

 "jmsTimestamp": 1536190382790,

 "jmsType": "",

 "deliveryDelay": "0001-01-01T00:00:00"

 },

 "text": "Hello"

 }

 }

 }

}

15

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

Conclusion

The JNBridge JMS Adapter for .NET is a custom WCF stack. As such it can be used to create WCF
services exposing a JMS publish/consume API that can be called remotely using HTTP/SOAP/XML.
Even though the service ran on a local machine’s IIS and used the On-Premise Data Gateway to
allow access from the Azure cloud, this entire implementation could be deployed to Azure,
including ActiveMQ.

Because the Custom Logic App Connector is essentially a REST/JSON client 90% configured by
using an API description language like WSDL or OpenAPI (Swagger), building a JMS connector is
simple. Moreover, any JMS implementation can be supported by simply modifying the Web.config
file.

Download the code for this kit here.

https://jnbridge.com/labfiles/JNBridge_Azure_Logic_Apps_Connector_JMS.zip

16

JNBridge R&D Showcase Azure Logic Apps Connector for JMS

COPYRIGHT © 2018, JNBRIDGE LLC. ALL RIGHTS RESERVED.

JNBRIDGE IS A REGISTERED TRADEMARK AND JNBRIDGEPRO AND THE JNBRIDGE LOGO ARE TRADEMARKS
OF JNBRIDGE, LLC.

ORACLE AND JAVA ARE REGISTERED TRADEMARKS OF ORACLE AND/OR ITS AFFILIATES.

MICROSOFT AND AZURE ARE TRADEMARKS, OR REGISTERED TRADEMARKS OF MICROSOFT CORPORATION IN
THE UNITED STATES

OTHER TERMS AND PRODUCT NAMES MAY BE TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR
RESPECTIVE OWNERS, AND ARE HEREBY ACKNOWLEDGED.

	Create a Custom Azure Logic App Connector using the JNBridge JMS Adapter for .NET
	Introduction
	This kit is a continuation of two previous blog posts, Creating WCF Services using the .NET JMS Adapter–Part 1 and Creating WCF Services using the .NET JMS Adapter–Part 2. The second blog in the series will be our starting point. In that blog, the JMS...
	Overview
	Prerequisites
	Create the Outbound Binding
	Create a Second WCF Service

	The resulting WCF service is composed of two WCF services, one that does not expose a SOAP interface and one that does. The Channel Listener that consumes JMS messages simply stores them in memory using a FIFO. The exposed service uses the basicHttpBi...
	The final coding task is the publishing configuration, WcfJmsSvcPublish.pubxml, that will publish the two services to IIS. One final step is to include the JMS Adapter for .NET component, jnbproxies.dll, in the project with Copy Always enabled. The as...
	After the services have been published to IIS, remember that the Channel Listener service must be configured for Auto-Start using AppFabric for Windows Server. Please refer to the section titled, Configuring AppFabric for Windows Server in the previou...
	Building a Custom Logic App Connector
	Most of the hard work is done because building the connector relies on the WSDL that describes the service that was just deployed to IIS. Despite the fact that the exposed API uses SOAP/XML, the WSDL description is used by the Custom Connector to faci...
	By simply clicking on the file, WcfJmsSvc.svc, the default page is displayed. Click on the circled link to generate the WSDL and save it to a file named WcfJmsSvc.wsdl.
	Now it’s time to open the Azure portal and create a Custom Logic App Connector. The first step is to add a new resource of type Logic App Custom Connector. In the Azure Dashboard, click on the Add link to get the New form and type in the string Logic ...
	Once the new resource has been created, open the custom connector console and click on the Edit link. In the form, How do you want to create your connector?, choose SOAP as the API endpoint and SOAP to REST as the call mode. Choose Upload WSDL from Fi...
	The next step is to click on the link Definition, bypassing the Security configuration as there will be no secure access in this example. Each of the operations exposed by the WCF service, MessageAvailable, GetMessage and PublishMessage must have a Su...
	When completed, click on the link Update Connector.
	Building a Logic App to Test the Connector
	The following screen shot shows the Logic App that will test the connector
	The Logic App is triggered by a Recurrence object that fires every minute. The first object to execute is the connector operation MessageAvailable which will return false if no JMS message is available to be consumed. If a message is available, the co...
	The arguments to the connector operation, PublishMessage, is a queue named, NemOutboundQueue and the text that is sent is a concatenation of the incoming text, “Hello”, and the string “ World!”. Here is the published JMS Text Message in the queue, Nem...
	Conclusion
	The JNBridge JMS Adapter for .NET is a custom WCF stack. As such it can be used to create WCF services exposing a JMS publish/consume API that can be called remotely using HTTP/SOAP/XML. Even though the service ran on a local machine’s IIS and used t...
	Because the Custom Logic App Connector is essentially a REST/JSON client 90% configured by using an API description language like WSDL or OpenAPI (Swagger), building a JMS connector is simple. Moreover, any JMS implementation can be supported by simp...

