
JNBridge Lab

1

Excel
Add-in

HBase/
Hadoop

Building an Excel Add-in for HBase
MapReduce

Building an Excel Add-in for HBase MapReduce

Summary

This latest project from JNBridge Labs investigates building an Excel add-in for Hadoop HBase. As a Java
framework, HBase applications must use Java APIs, resulting in single-platform solutions. A cross-platform
HBase integrated solution, particularly one that provides business intelligence on the desktop, like Microsoft
Excel, is unable to leverage the HBase remote client API. This means using a lower level interoperability
mechanism, like implementing a .NET Thrift client. The current project uses JNBridgePro for .NET-to-Java
interoperability. It also leverages concepts and code from the previous lab, Building a LINQ provider for
HBase MapReduce, which investigated a LINQ extension for HBase.

Introduction

Hadoop allows businesses to quickly analyze very large data sets. Hadoop can reduce ludicrous amounts
of data to a meaningful answer in a short amount of time, however, without understanding the shape
of your data, you run the risk of garbage in, garbage out. Analysis itself is an iterative process relying on
investigation. Tools that aid data investigation provide a means to quickly view, sort, filter/reduce and
represent data, making it possible to quickly find and understand patterns, trends and relationships.

Microsoft Excel has always been the ubiquitous off-the-shelf tool for data analysis and it makes a ready-to-
go front end for Hadoop. Excel can be extended using add-ins developed in Visual Studio using VSTO, Visual
Studio Tools for Office. This lab will explore a simple Excel front-end to HBase MapReduce. The front-end
will allow a user to view HBase tables and execute MapReduce jobs. The goal is to make the add-in generic
with respect to the column definitions and data in a HBase table.

Getting Started

The components required for this lab are identical to those required in the previous lab, Building a LINQ
provider for HBase MapReduce. Here’s a quick list of the components.

1.	 Apache Hadoop Stack (see the previous lab’s Getting Started section for more information)

2.	 Visual Studio 2012

3.	 Eclipse

4.	 JNBridgePro 7.0

http://www.jnbridge.com/jn/blog/2012/10/10/building-a-linq-provider-for-hbase-mapreduce
http://www.jnbridge.com/jn/blog/2012/10/10/building-a-linq-provider-for-hbase-mapreduce
http://www.jnbridge.com/jn/blog/2012/10/10/building-a-linq-provider-for-hbase-mapreduce
http://www.jnbridge.com/jn/blog/2012/10/10/building-a-linq-provider-for-hbase-mapreduce

JNBridge Lab

2

5.	 Office Developer Tools for Visual Studio 2012 (this includes VSTO).

6.	 Microsoft Office 2010

Calling Java from .NET: Creating proxies using JNBridgePro

Since the Excel add-in is written in C#/.NET and needs to call several Java class APIs, the first step is to use
the JNBridgePro plug-in for Visual Studio to create an assembly of proxies that represent the Java API.
When a proxy of a Java class is instantiated in .NET, the real Java object is instantiated in the Java Virtual
Machine. The JNBridgePro run-time manages communications, i.e. invoking methods, and syncing garbage
collection between the .NET CLR and the JVM.

For this development step, as well as during run-time, a bunch of Hadoop, HBase and ZooKeeper JAR files
must be available on the Windows machine. These can be scraped from a machine running the Hadoop
stack (look in /usr/lib/hadoop/lib, /usr/lib/hbase/lib, etc.)

This is a screen shot of the Edit Class Path dialog for the JNBridgePro Visual Studio plug-in.

These are the JAR files required to create the .NET proxies. During run-time, three additional JAR files must
be included in the JVM’s class path when initiating the bridge between the JVM and the CLR: avro-1.5.4.jar,
commons-httpclient-3.1.jar and slf4j-nop-1.6.1.jar (the last JAR file inhibits logging by Hadoop and HBase).

Below is a screen shot of the JNBridgePro proxy tool in Visual Studio. The left hand pane shows all the
namespaces found in the JAR files shown in the above dialog. The required namespaces are org.apache.
hadoop.hbase.client and org.apache.hadoop.hbase.filter. In addition, individual classes like org.apache.
hadoop.hbase.HBaseConfiguration are required (see the link at the end of this blog to download the
source).

http://www.jnbridge.com

JNBridge Lab

3

By clicking on the Add+ button, the chosen classes, as well as every dependent class, will be found and
displayed in the center pane. The right-hand pane displays the public members and methods of the Java
HTable class. The last step is to build the proxy assembly, DotNetToJavaProxies.dll.

Creating and populating an HBase Table

It would be nice to have an HBase table loaded with data and provide an opportunity to test calling various
HBase Java APIs from .NET. The simple data will consist of an IP address, like “88.240.129.183″ and the
requested web page, for example “/zebra.html”. This lab will use the same table, access_logs, created for
the previous lab, Building a LINQ provider for HBase MapReduce. Please see the previous lab’s section,
Creating and populating an HBase Table, for the code used to build this table.

Building an Excel add-in

The Excel add-in will consist of a single control pane. As the user interacts with the pane, underlying code
accesses the Excel data model consisting of workbooks, worksheets and charts. Here’s what the completed
add-in looks like.

http://www.jnbridge.com
http://www.jnbridge.com/jn/blog/2012/10/10/building-a-linq-provider-for-hbase-mapreduce/

JNBridge Lab

4

The class HBasePane is a .NET User Control. It consists of two groups, View Table and Map Reduce. The
above screen shot shows the user controls labeled Zookeeper Host, Table Name and Number of Records,
which all have user entered values. By clicking on the button, View Records, the user has loaded in 20 rows
from the HBase table, access_logs.

Here’s the handler code for the button click event.

 private void viewTableButtonClick(object sender, EventArgs e)
 {
 Excel.Worksheet activeWorksheet
 = ((Excel.Worksheet)Globals.ExcelHBaseAddIn.Application.ActiveSheet);
 activeWorksheet.Name = “Records”;
 Excel.Range navigator = activeWorksheet.get_Range(“A1”);

http://www.jnbridge.com

JNBridge Lab

5

 int numRows = Decimal.ToInt32(this.numberOfRecords.Value);
 // most of the work done here
 this.columns = ViewHBaseTable.populateWorkSheet(navigator
 , this.hostName.Text
 , this.tableName.Text
 , numRows);
 // autofit the range
 int numCols = this.columns.Count<string>();
 Excel.Range c1 = activeWorksheet.Cells[1, 1];
 Excel.Range c2 = activeWorksheet.Cells[numRows, numCols];
 this.cols = activeWorksheet.get_Range(c1, c2);
 this.cols.EntireColumn.AutoFit();
 // populate the user controls with the column names
 this.filterComboBox.Items.AddRange(this.columns);
 this.frequencyComboBox.Items.AddRange(this.columns);
 }

All the work is done in the method, ViewHBaseTable.populateWorkSheet(). The user controls are
hostName, tableName and numberOfRecords. The hostName control contains the address of the machine
that’s running Zookeeper, which is responsible for managing connections from the HBase client API. Below
is code from populateWorkSheet(). Notice that the HBase table column family and cell names are obtained
using the methods getFamily() and getQualifier() along with the cell values. The method returns an array of
strings that represents the column and cell names in the table. These are used to populate the combo box
controls filterComboBox and frequencyComboBox in the group Map Reduce.

 Configuration hbaseConfig = HBaseConfiguration.create();
 hbaseConfig.set(“hbase.zookeeper.quorum”, hostName);
 try
 {
 HTable tbl = new HTable(hbaseConfig, tableName);
 Scan scan = new Scan();
 ResultScanner scanner = tbl.getScanner(scan);
 Result r;
 while (((r = scanner.next()) != null) && ndx++ < numRecords)
 {
 List aList = r.list();
 ListIterator li = aList.listIterator();
 while (li.hasNext())
 {
 kv = (KeyValue)li.next();
 familyName = Bytes.toString(kv.getFamily());
 cellName = Bytes.toString(kv.getQualifier());
 value = Bytes.toString(kv.getValue());
 // make a unique list of all the column names
 if (!names.Contains(familyName + “:” + cellName))
 {
 names.Add(familyName + “:” + cellName);

http://www.jnbridge.com

JNBridge Lab

6

 }
 // add headers
 if (currentRow == 2)
 {
 currentCell = navigator.Cells[1, currentColumn];
 currentCell.Value2 = cellName;
 }
 currentCell = navigator.Cells[currentRow, currentColumn++];
 currentCell.Value2 = value;
 }
 currentRow++;
 currentColumn = 1;
 }
 scanner.close();
 tbl.close();
 }
 catch (Exception ex)
 {
 throw ex;
 }
 return names.ToArray<string>();
 }

Generic filtering and frequency user interface

Below is a close-up screenshot of the HBase pane. The interface in the View Table group allows the user
to point to a Hadoop implementation, choose a table and the number of records to load into the active
worksheet. Once that is done, the user can then define a MapReduce job using the controls in the Map
Reduce group.

http://www.jnbridge.com

JNBridge Lab

7

The user interface allows filtering on any one column. The combo box control labeled Choose filter column
contains all the column names in the form family:cell. The text box labeled FilterValue is the filter which
elides all rows where the chosen column doesn’t match the filter value. The combo box labeled Column
to Count is used to choose the column whose values will be grouped and counted. The above values ask
the question: “What are the pages—specifically the frequencies of the pages— visited by the IP address
80.240.129.183“.

When the button, Map Reduce, is clicked, this handler is invoked:

 private void onMapRedButtonClick(object sender, EventArgs e)
 {
 this.filterColumn = this.filterComboBox.Text;
 this.filterValue = this.filterValueTextBox.Text;
 this.frequencyColumn = this.frequencyComboBox.Text;
 Excel.Worksheet activeWorksheet
 = ((Excel.Worksheet)Globals.ExcelHBaseAddIn.Application.Worksheets[2]);
 activeWorksheet.Name = “Frequency”;
 Excel.Range navigator = activeWorksheet.get_Range(“A1”);
 // most of the fun stuff happens here
 int numRows = MapReduce.executeMapReduce(navigator

http://www.jnbridge.com

JNBridge Lab

8

 , this.filterColumn
 , this.filterValue
 , this.frequencyColumn
 , this.hostName.Text
 , this.tableName.Text);
 // autofit the range
 Excel.Range c1 = activeWorksheet.Cells[1, 1];
 Excel.Range c2 = activeWorksheet.Cells[numRows, 2];
 this.cols = activeWorksheet.get_Range(c1, c2);
 this.cols.EntireColumn.AutoFit();
 // bring the worksheet to the top
 activeWorksheet.Activate();
 }

All the work is done by the method MapReduce.executeMapReduce(), partially shown below. The .NET-to-
Java method call, HBaseToLinq.FrequencyMapRed.executeMapRed(), is almost the same Java code used
in the previous lab, Building a LINQ provider for HBase MapReduce. The only modifications have been
to remove hard-coded column names, instead using the programmatic column names for filtering and
frequency counts chosen by the user. The method then scans the results of the MapReduce job stored in
the table, summary_user, and loads them into a worksheet, returning the number of records in the results
table.

 try
 {
 HBaseToLinq.FrequencyMapRed.executeMapRed(hostName
 , tableName
 , frequencyColumn
 , columnToFilter
 , filterValue);
 }
 catch(Exception ex)
 {
 throw ex;
 }
 Configuration hbaseConfig = HBaseConfiguration.create();
 hbaseConfig.set(“hbase.zookeeper.quorum”, hostName);
 try
 {
 string cellName =
 frequencyColumn.Substring(frequencyColumn.IndexOf(“:”) +1);
 string familyName =
 frequencyColumn.Substring(0, frequencyColumn.IndexOf(“:”));
 HTable tbl = new HTable(hbaseConfig, “summary_user”);
 Scan scan = new Scan();
 ResultScanner scanner = tbl.getScanner(scan);
 Result r;

http://www.jnbridge.com
http://www.jnbridge.com/jn/blog/2012/10/10/building-a-linq-provider-for-hbase-mapreduce/

JNBridge Lab

9

 while ((r = scanner.next()) != null)
 {
 rowKey = Bytes.toString(r.getRow());
 count = Bytes.toInt(r.getValue(Bytes.toBytes(familyName)
 , Bytes.toBytes(“total”)));
 currentCell = navigator.Cells[currentRow, currentColumn++];
 currentCell.Value2 = rowKey;
 currentCell = navigator.Cells[currentRow++, currentColumn];
 currentCell.Value2 = count;
 currentColumn = 1;
 }
 scanner.close();
 tbl.close();
 }
 catch (Exception ex)
 {
 throw ex;
 }
 return currentRow - 1;

Here’s a screen shot of the Excel add-in after performing the MapReduce.

http://www.jnbridge.com

JNBridge Lab

10

Visualizing data

Data visualization through graphs and charts is an important final step when investigating and analyzing
data. Clicking on the button Chart Frequencies causes the add-in to create a stacked column chart of the
Frequency worksheet. Here’s the code for the handler, onChartFrequenciesClick().

 private void onChartFrequenciesClick(object sender, EventArgs e)
 {
 Excel.Workbook wb = Globals.ExcelHBaseAddIn.Application.ActiveWorkbook;
 Excel.Chart chart = (Excel.Chart)wb.Charts.Add();
 chart.ChartType = Excel.XlChartType.xlColumnStacked;
 chart.SetSourceData(this.cols, Excel.XlRowCol.xlColumns);
 chart.HasTitle = true;

http://www.jnbridge.com

JNBridge Lab

11

 string filterName = this.filterColumn.Substring(this.filterColumn.IndexOf(“:”) + 1);
 string frequencyName
 = this.frequencyColumn.Substring(this.frequencyColumn.IndexOf(“:”) + 1);
 chart.ChartTitle.Text = “Frequency of “
 + frequencyName
 + “ when “ + filterName
 + “ = “ + this.filterValue;
 }

This screen shot of the add-in shows the resulting chart. Notice that the MapReduce columns for filtering
and frequency are different than the previous example. Here, the question being asked is “What is the
frequency of visiting IP addresses for the page, /cats.html”.

http://www.jnbridge.com

JNBridge Lab

12
Copyright © 2013 JNBridge, LLC. All rights reserved. JNBridge and JNBridgePro are trademarks of JNBridge, LLC.
All other products are the trademarks or registered trademarks of their respective owners.

Conclusion

Building an Excel add-in that supports viewing any HBase table of column families and provides filtering
and Map Reduce frequency counts is relatively straight forward. Leveraging the HBase Java client APIs using
JNBridgePro to create .NET proxies is key to the simplicity. By keeping the MapReduce job both on the Java
side and generic, any table can be filtered and reduced to frequencies of one particular column.

The source for this example can be downloaded from jnbridge.com/labs/HBaseExcelAddIn.zip.

http://www.jnbridge.com
http://www.jnbridge.com/labs/HBaseExcelAddIn.zip

