

Getting Started with the JNBridgePro Plug-ins for
Visual Studio and Eclipse

Version 12.0

jnbridge.com

JNBridge, LLC
jnbridge.com

COPYRIGHT © 2001–2025 JNBridge, LLC. All rights reserved.

JNBridge is a registered trademark and JNBridgePro and the JNBridge logo are trademarks of JNBridge, LLC.

Java is a registered trademark of Oracle and/or its affiliates.

Microsoft, Visual Studio, the Visual Studio logo, and Windows are trademarks, or registered trademarks of
Microsoft Corporation in the United States and/or other countries.
Eclipse and Eclipse Ready are the trademarks of Eclipse Foundation, Inc.

All other marks are the property of their respective owners.

April 7, 2025

Getting Started with JNBridgePro Plug-ins

 3

Table of Contents

GETTING STARTED WITH THE JNBRIDGEPRO PLUG-INS FOR VISUAL STUDIO
AND ECLIPSE .. 1

TABLE OF CONTENTS .. 3

Introduction 4

JNBridgePro plug-in for Visual Studio 4
Installing the Visual Studio plug-in (Visual Studio 2017 or 2019) ... 4
Generating the proxies ... 4
Using the proxies ... 13

JNBridgePro plug-in for Eclipse 14
Generating the proxies ... 15
Using the proxies ... 22

Getting Started with JNBridgePro Plug-ins

 4

Introduction
This document shows how to use the JNBridgePro plug-ins for Visual Studio and for Eclipse to
generate proxies and to use them in larger projects. Users can generate their proxies within Visual
Studio 2017 and 2019, and within Eclipse 3.2 through 4.10, and use the generated proxies seamlessly
in their project builds.

This document assumes that the users are familiar with the JNBridgePro standalone proxy generation
tool, and with how the generated proxies can be used. For more information on these topics, please
see the examples that ship with the JNBridgePro installation, and also the Users’ Guide.

JNBridgePro plug-in for Visual Studio
The JNBridgePro plug-in for Visual Studio can be used with Visual Studio 2017, and 2019, and is
used in projects where .NET code is calling Java code. The example is taken from the “log demo”
that comes with the JNBridgePro installation. For more information on the log demo, please see the
document associated with it that comes with the installation

Installing the Visual Studio plug-in (Visual Studio 2017 or 2019)
Up through Visual Studio 2015, the Visual Studio plug-in is installed automatically when
JNBridgePro is installed in development mode. Starting with Visual Studio 2017, an additional step
must be performed. In the JNBridgePro installation folder, locate the folder “VS plugin (2017 and
later).” In that folder, you will find a file JNBridgePlugin2017.vsix. Assuming Visual Studio 2017
and/or 2019 is installed, double-click on this file in Windows Explorer. The Visual Studio extension
manager will come up. When prompted, select the versions of Visual Studio in which you want the
plug-in to be installed, then follow the remaining instructions. When the process is complete, the
plug-in will be installed.

The plug-in packaged in the VSIX file will only work if JNBridgePro has already been installed in
development mode on that machine, and if a valid development license has been deployed to that
machine.

Generating the proxies
Start by creating your new solution, and a C# console application. Add the files App.config and
LoggerDemo.cs (Figure 1).

Getting Started with JNBridgePro Plug-ins

 5

Figure 1. Log demo project

Next, create a new proxy generation project. There are several ways to do this, but the simplest way is
to right-click on the solution node in the Solution Explorer, then select AddNew Project…. In the
Add New Project dialog box that now appears, note that there is a new project type, JNBridge, and a
new template, DotNetToJavaProxies. Select that template, then name the new project and assign it a
location (Figure 2 and Figure 3).

Getting Started with JNBridgePro Plug-ins

 6

Figure 2. Adding a new JNBridge proxy generation project (VS 2017)

Getting Started with JNBridgePro Plug-ins

 7

Figure 3. Adding a new JNBridge proxy generation project (VS 2019)

Note that the Solution Explorer now contains a new proxy generation project, and a new proxy
generation document, a .jnb file. This is the same .jnb file used by the standalone proxy generator
(Figure 4).

Getting Started with JNBridgePro Plug-ins

 8

Figure 4. After adding the proxy generation project

Open the .jnb file by double-clicking on its node in the Solution Explorer. An editor window will
open in Visual Studio. Note that its layout resembles the GUI version of the standalone JNBridgePro
proxy generation tool (Figure 5).

Figure 5. After opening the .jnb file

Next, add the files log4j.jar and log4j-core.jar to the class path to be searched for proxy generation.
(You can download the log4j JAR files from http://jakarta.apache.org/log4j/docs/index.html.) Also
add the folder in which loggerDemo\JavaClass.class is to be found. Use the menu command

http://jakarta.apache.org/log4j/docs/index.html

Getting Started with JNBridgePro Plug-ins

 9

JNBridgePro→Edit Classpath…. (Alternatively, you can right-click on the .jnb file node in the Solution
Explorer and select Edit Classpath… or use the Edit Classpath button in the JNBridgePro toolbar.)
The Edit Class Path dialog box will come up, and clicking on the Add… button will bring up a dialog
that will allow the user to indicate the paths of the Jar and class files (Figure 6).

Figure 6. Adding a new classpath element

When all the necessary elements of the classpath are added, the Edit Class Path dialog should contain
information similar to that shown in Figure 7.

Getting Started with JNBridgePro Plug-ins

 10

Figure 7. After creating classpath

The next step is to load the classes from each of the Jar files, and to add JavaClass. For the Jar files,
use the menu command JNBridgePro→Add Classes from JAR File… for each Jar file. For a single class
such as JavaClass, use the menu command JNBridgePro→Add Classes from Classpath… and enter the
fully qualified class name loggerDemo.JavaClass (Figure 8). (You can also accomplish these actions
by right-clicking on the .jnb file node in the Solution Explorer, or by clicking on the appropriate
button in the JNBridgePro toolbar.)

Getting Started with JNBridgePro Plug-ins

 11

Figure 8. Adding a class from the classpath

Loading the classes may take a few minutes. Progress will be shown in the output window (in the
JNBridge sub-pane) in Visual Studio, and in the progress bar. When completed, the classes in the
log4j Jar files and loggerDemo.JavaClass will be displayed in the Environment pane on the upper left
of the editor (Figure 9). Note that JNBridgePro will warn us that we are missing a number of classes
relating to JMS (Java Messaging Service), XML, and JavaMail. Since we are not going to use these
capabilities of log4j, we can safely ignore this warning.

Getting Started with JNBridgePro Plug-ins

 12

Figure 9. After adding classes

We wish to generate proxies for all these classes, so when all the classes have been loaded into the
environment, make sure that each class in the tree view has a check mark next to it. Quick ways to do
this include clicking on the check box next to each package name, or simply by selecting the menu
command JNBridgePro→Check All in Environment. Once each class has been checked, click on the
Add button to add each checked class to the list of proxies to be exposed. These will be shown in the
Exposed Proxies pane (Figure 10).

Getting Started with JNBridgePro Plug-ins

 13

Figure 10. After adding classes to Exposed Proxies pane

While one can build the proxies now, using the JNBridgeProBuild menu item, in this example, we
will wait until we have referenced the proxy generation project in the main executable’s project and
do the build as part of a build of the entire solution.

Using the proxies
Now that we have created the proxy generation project, we can reference the project from our main
project by right-clicking on the project node for our main executable and selecting Add Reference….
In the Add Reference dialog box, select the Projects tab, and select the proxy generation project.
Also, under the Browse tab, select jnbshare.dll and jnbsharedmem_x86.dll or jnbsharedmem_x64.dll
(or both) from the JNBridgePro installation folder, using the 4.8-targeted versions and add them to the
references (Figure 11).

Finally, add the licensing dlls jnbauth_x86.dll or jnbauth_x64.dll (or both) to the project. They’re not
.NET dlls, so you can’t add them as references – instead, add them to the project through
AddExisting Item…, and make sure their Copy to Output Directory properties are both set to Copy
Always.

Getting Started with JNBridgePro Plug-ins

 14

Figure 11. After referencing the proxy generation project

Once that’s done, just build your solution. That’s all there is to it. The output of the proxy generation
project will be automatically used in your main executable’s project.

Once you’ve built the proxies, they will appear in Visual Studio’s IntelliSense when you program
against them. (If you haven’t yet built the proxy project, they won’t appear in IntelliSense until you
do.)

At this point, create, configure, and run your project as described in the “Log Demo” document.

JNBridgePro plug-in for Eclipse
The JNBridgePro plug-in for Eclipse can be used with Eclipse 3.2 through 4.13, and is used in
projects where Java code is calling .NET code. The example is taken from the “Java-to-.NET” that
comes with the JNBridgePro installation. For more information on the Java-to-.NET demo, please see
the document associated with it that comes with the installation.

Getting Started with JNBridgePro Plug-ins

 15

Before using the Eclipse plug-in, make sure it has been installed. Locate the file jnbridgepro11_0_0-
eclipse.zip in the “Eclipse plug-in” folder located in the JNBridgePro 11.0 installation folder. Open
the zip file and extract its contents (a folder “com.jnbridge.plugin.eclipse_2.4.0”) to the plugins folder
inside your Eclipse installation.

If you are using the 64-bit version of Eclipse, you must use the 64-bit version of JNBridgePro, and
you must add the following argument to eclipse.ini:

 -vm C:/Program Files/Java/jre8/bin/javaw.exe

or use a path to some other 64-bit javaw.exe. Do not use the path to the javaw.exe that resides in
\Windows\System32.

Generating the proxies
Start by creating your main Java project. Here we will simply create a project and import the Java
files supplied in the Java-to-.NET demo (found in the file winFormDemo22.zip in the JNBridgePro
installation). Note that there are compilation errors because they reference proxy classes that do not
yet exist (Figure 13).

Figure 12. The initial project

Next, we will create our proxy generation project. Select the FileNewOther… menu item. The New
dialog box will appear. Note that there are two new items under the JNBridge header: “Java to .NET
Interoperability Project,” and “Java-to-.NET Proxies” (Figure 14).

Getting Started with JNBridgePro Plug-ins

 16

Figure 13. Creating a new interoperability project

Select “Java to .NET Interoperability Project” and click on the Next button. Give the project a name,
and indicate its location. Do not reference any other projects.

Next, select the project node for the proxy generation. Right-click on the project node and select
NewOther…. In the New dialog box this time, select “Java to .NET proxies” and click on the Next
button. Again, select a name, but leave the location the same. The Package Explorer will now display
the new proxy generation project (Figure 15). Inside the project will be a .jnb file node. This
represents the same .jnb file that is used by the GUI-based standalone proxy generation tool.

Getting Started with JNBridgePro Plug-ins

 17

Figure 14. After adding the new proxy generation project

At this point, an editor window for the .jnb file should be displayed in Eclipse (Figure 16). If it is not
displayed, you can display it by double-clicking on the .jnb file node in the Package Explorer.

Figure 15. The proxy generation editor in Eclipse

Next, add the assemblies SwingInterop.dll and System.Windows.Forms.dll to the assembly list to be
searched by JNBProxy. (We will be calling methods that are not defined in SwingInterop.Form1 and
Form2, but rather in their superclass System.Windows.Forms.Form, which is defined in
System.Windows.Forms.dll.) Use the menu command JNBridgePro→Edit Assembly List…. (Make sure
that the proxy generation editor is active.) The Edit Assembly List dialog box will come up, and
clicking on the Add… button will bring up a dialog that will allow the user to indicate the paths of

Getting Started with JNBridgePro Plug-ins

 18

SwingInterop.dll (Figure 17). Alternatively, you can right-click on the .jnb file node in the Package
Explorer and select Edit Assembly List….

Figure 16. Adding a new assembly list element

System.Windows.Forms.dll is in the Global Assembly Cache (GAC). Add it to the assembly list by
clicking on the Add From GAC… button, and selecting the System.Windows.Forms.dll from the
displayed list (Figure 18). If you have more than one version of the .NET Framework installed on
your machine, you may have more than one version of System.Windows.Forms.dll in the GAC; select
the appropriate one.

Getting Started with JNBridgePro Plug-ins

 19

Figure 17. Selecting an assembly from the GAC

Note that we are using the .NET 4.0 version of System.Windows.Forms.

Figure 18. Targeting .NET Framework 4.0

When all the necessary elements of the classpath are added, the Edit Assembly List dialog should
contain information similar to that shown in Figure 20.

Figure 19. After creating assembly list

Getting Started with JNBridgePro Plug-ins

 20

The next step is to load the classes Form1, Form2, and JavaWindowEventArgs, plus the supporting
classes. Use the menu command JNBridgePro→Add Classes from Assembly List… and enter the fully
qualified class names SwingInterop.Form1, SwingInterop.Form2, and
SwingInterop.JavaWindowEventArgs, making sure that the “Include supporting classes” checkbox is
checked for each (Figure 21). Alternatively, you can also right-click on the .jnb file node in the
Package Explorer and select Add Classes from Assembly List….

Figure 20. Adding a class from the assembly list

Loading the classes may take a few seconds. Progress will be shown in the console pane in the bottom
of the window, and in the progress bar. (If you don’t see a console, select the WindowShow
ViewConsole menu item.) When completed, Form1, Form2, and all their supporting classes will be
displayed in the Environment pane on the upper left of the proxy generation editor (Figure 22). Note
that JNBridgePro will warn us that we are missing a number of classes. Since we are not going to use
these capabilities, we can safely ignore this warning.

Getting Started with JNBridgePro Plug-ins

 21

Figure 21. After adding classes

We wish to generate proxies for all these classes, so when all the classes have been loaded into the
environment, make sure that each class in the tree view has a check mark next to it. Quick ways to do
this include clicking on the check box next to each package name, or simply by selecting the menu
command JNBridgePro→Check All in Environment. Once each class has been checked, click on the
Add button to add each checked class to the list of proxies to be exposed. These will be shown in the
Exposed Proxies pane (Figure 23).

Getting Started with JNBridgePro Plug-ins

 22

Figure 22. After adding classes to Exposed Proxies pane

Unlike the standalone proxy generation tool, we do not explicitly generate the proxies; they will be
built automatically, as needed. In this case, for example, since Build Automatically was set, the build
takes place whenever the contents of the Exposed Proxies pane changes, as it did here.

Using the proxies
To use the proxies in another project, right-click on that project’s node in the Package Explorer and
select Build PathConfigure Build Path…. Select the Libraries tab, then click on the “Add JARs…”
button. A JAR Selection dialog box will be displayed. Navigate to the associated JNBridge project
node, then into its bin directory and select the proxy jar file (Figure 24).

Getting Started with JNBridgePro Plug-ins

 23

Figure 23. Adding a reference to the proxy jar file

One must also add the files jnbcore.jar and bcel-6.10.0.jar from the JNBridgePro installation to the
Java Build Path. Then, when one performs a build, the referencing project will use the proxy jar file
generated by the JNBridge project. If the JNBridge project is out of date or has not yet been built, it
will automatically be build or rebuilt before being used.

Information concerning the generation of the proxies is displayed in Eclipse’s Console window. If the
build was unsuccessful, information describing the errors will be found there.

	Getting Started with the JNBridgePro Plug-ins for Visual Studio and Eclipse
	Table of Contents
	Introduction
	JNBridgePro plug-in for Visual Studio
	Installing the Visual Studio plug-in (Visual Studio 2017 or 2019)
	Generating the proxies
	Using the proxies

	JNBridgePro plug-in for Eclipse
	Generating the proxies
	Using the proxies

