

Demo: Embedding Windows Forms elements inside a
Java GUI application

Version 10.1

jnbridge.com

JNBridge, LLC
jnbridge.com

COPYRIGHT © 2002–2019 JNBridge, LLC. All rights reserved.

JNBridge is a registered trademark and JNBridgePro and the JNBridge logo are trademarks of JNBridge, LLC.

Java is a registered trademark of Oracle and/or its affiliates. Microsoft, Visual Studio, and IntelliSense are
trademarks or registered trademarks of Microsoft Corporation in the United States and other countries. Apache is
a trademark of The Apache Software Foundation.

All other marks are the property of their respective owners.

August 13, 2019

Demo: Embedding a .NET GUI element inside a Java GUI application

 3

Introduction
This document shows how a .NET WinForms control can be embedded inside a Java GUI application
(either an AWT, Swing, or SWT application). If you are unfamiliar with JNBridgePro, we
recommend that you work through one of the other demos first. We recommend working through the
“Java-to-.NET demo,” which will work through the entire process of generating proxies and setting
up, configuring, and running an interop project. This current document assumes such knowledge, and
is mainly a guided tour of the code and configuration information necessary to embed .NET GUI
elements inside GUI-based Java applications.

The .NET GUI component
In this example, we have provided a simple .NET WinForms control, JNBTest.JNBControl.

Any .NET GUI component to be embedded inside a Java GUI application must be derived from
System.Windows.Forms.Control. The JNBControl class above is derived from
System.Windows.Forms.UserControl, which is a subclass of System.Windows.Forms.Control.
JNBControl contains a TextBox and a Button; the TextBox is public, so outside code can get and set
the box’s text, and a public method makes it possible to register an event handler for the button.
JNBControl should look like the following:

Generating the proxies
We have provided a proxy jar file dotNetControlProxies.jar, which contains the proxies for
JNBTest.JNBControl, plus all supporting classes. However, it is straightforward to generate the
proxies oneself.

If you generate the proxy jar file, you should make sure that both the dll with the .NET control, and
System.Windows.Forms (from the GAC) are in the proxy generator’s assembly list. Make sure you
have the correct version of System.Windows.Forms. Also, you must explicitly add
System.Windows.Forms.UnsafeNativeMethods to the proxy generation project and proxy it.

Embedding the Java component inside the Windows Form
We have prepared a Java AWT application to contain the embedded .NET component.

Inside the application’s main method, we have added the following lines
 // create the .NET control
 JNBControl c = new JNBControl();
 // wrap it so it can be embedded
 DotNetControl dnc = new DotNetControl(c);

Demo: Embedding a .NET GUI element inside a Java GUI application

 4

 // size it
 dnc.setSize(224, 104);
 // embed it
 f.add(dnc, dncConstraints);

The code first instantiates the proxy for the .NET component (JNBControl), then embeds it inside a
special wrapper, com.jnbridge.embedding.DotNetControl, which inherits from java.awt.Canvas, and
which allows the .NET component to be used wherever a Java component is expected. The
DotNetControl is then resized to be the same size as the embedded .NET control, and the control is
added to the application’s Frame object, along with previously defined layout constraints.

We have also created a callback class that implements JNBTest.clickDelegate, the interface
representing the button’s event handler, and which will be executed whenever the .NET component’s
button is clicked:

 static TextField echo;

 public static class ClickEventHandler implements clickDelegate
 {
 public void Invoke(String message)
 {
 echo.setText(message);
 }
 }

The callback code takes the text from the .NET TextBox (passed as a parameter), and writes it to the
Java TextField echo. The callback is instantiated and registered with the .NET component as an
clickDelegate by the following line in the main method:

 c.registerClickDelegate(new ClickEventHandler());

Finally, JNBridgePro is started and configured through a call to
com.jnbridge.jnbcore.DotNetSide.init():
 DotNetSide.init(args[0]);

where the path to the Java-side configuration file is supplied as a command-line argument.

Configuring and running the application
The project is constructed in the same way as other .NET-to-Java interop projects. The
communications mechanism must be shared memory:

.NET-side (Java-to-.NET) properties
dotNetSide.serverType=sharedmem
dotNetSide.assemblyList.1=../DotNet/JNBTest/bin/Debug/JNBTest.dll
dotNetSide.assemblyList.2=System.Windows.Forms, Version=4.0.0.0,
 Culture=neutral, PublicKeyToken=b77a5c561934e089
dotNetSide.javaEntry=C:/Program Files (x86)/JNBridge/JNBridgePro v10.1/4.0-
 targeted/JNBJavaEntry_x64.dll

As with all other Java-to-.NET applications that use shared memory, you must make sure that
jnbshare.dll, jnbsharedmem_x86.dll (or jnbsharedmem_x64.dll, or both), and jnbjavaentry2_x86.dll
(or jnbjavaentry2_x64.dll or both) are all installed in the Global Assembly Cache (GAC). Depending

Demo: Embedding a .NET GUI element inside a Java GUI application

 5

on whether you will be running the application as 32-bit or 64-bit, choose the “_x86” or “_x64”
variants of jnbsharedmem.dll, jnbjavaentry.dll, and jnbjavaentry2.dll, as appropriate.

We supply a .bat file runJava.bat to encapsulate the commands needed to start the application

When the Java application is run, the .NET component appears embedded in the Java application, and
when text is entered in the .NET component’s text field and the “Send” button is clicked, the text will
appear in the Java application’s text box, illustrating how the .NET and Java GUI elements
communicate.

Embedding .NET controls in SWT applications
It is also possible to embed a .NET control in an SWT application. The process is identical to that of
embedding in AWT/Swing applications, as described above, except for the following differences:

• Instead of wrapping the embedded .NET control inside
com.jnbridge.embedding.DotNetControl, you must embed it inside
com.jnbridge.embedding.DotNetSWTControl, which inherits from
org.eclipse.swt.widgets.Composite. The constructor for DotNetSWTControl takes as
arguments both the embedded .NET control and the parent SWT composite object that will
contain it:

 DotNetSWTControl myControl = new DotNetSWTControl(dotNetControl, parent);
 myControl.setBounds(0, 50, 655, 303); // and set its size and location

Note that the DotNetSWTControl should be positioned and sized after being created.

• The Win32 version of swt.jar must be in the run-time classpath.

• The path of the folder containing the Win32 version of the SWT dlls (typically the
plugins\org.eclipse.swt.win32_3.1.0\os\win32\x86 folder in the Eclipse installation folder)
must be in the Java library path. For example, for Eclipse 3.1, add
-Djava.library.path="C:\Program Files\Eclipse
 3.1\eclipse\plugins\org.eclipse.swt.win32_3.1.0\os\win32\x86"
to the command-line immediately after the java command. This path will differ depending on
your installation and the version of Eclipse you are using.

Demo: Embedding a .NET GUI element inside a Java GUI application

 6

Summary
The above example shows how simple it is to embed a .NET Windows Forms component inside a
Java GUI application. This embedding can be accomplished in three steps:

• Proxy the .NET component and the supporting classes

• Write code to wrap the Java component’s proxy in the special DotNetControl wrapper class,
size it, and add that DotNetControl object to the containing Java Frame.

• Create Java classes to implement any event handlers, and register them with the .NET
control’s proxy,

We also describe how to embed .NET controls inside SWT applications. The main difference
between embedding in SWT applications and embedding in AWT/SWT applications is that you must
use the DotNetSWTControl wrapper class when embedding in SWT applications.

	Demo: Embedding Windows Forms elements inside a Java GUI application
	Introduction
	The .NET GUI component
	Generating the proxies
	Embedding the Java component inside the Windows Form
	Configuring and running the application
	Embedding .NET controls in SWT applications
	Summary

