

Technical Note:
JNBridgePro and Clustering

This technical note describes how JNBridgePro can be used as part of a clustered J2EE architecture, so
that .NET code can participate in the failover, high-availability, and load-balancing capabilities offered by
clustering. We first describe JNBridgePro’s native failover capability, which does not depend on the
clustering mechanism offered by any specific J2EE application server vendor, then we describe how to
make JNBridgePro work with the proprietary clustering mechanisms offered by application server
vendors.

JNBridgePro’s failover capability

JNBridgePro offers a basic failover capability as part of its EE version that allows a .NET client to
transparently switch its communications from one back-end Java server to another when the first one
fails. Figure 1 shows the recommended architecture for using JNBridgePro failover to access an
Enterprise Java Bean. Note that Java sides are deployed on each server in a WAR file that contains the
JNBridgePro Java runtime component, an EJB client JAR file, and associated configuration information.

..NNEETT CClliieenntt

.NET
Code

Proxy
DLL

.NET
Runtime

Component

jnbcore.jar
EJB

Client
JAR

EJB
Server
JAR

Config

Java Side WAR File

PPrriimmaarryy JJ22EEEE AApppplliiccaattiioonn SSeerrvveerr

jnbcore.jar
EJB

Client
JAR

EJB
Server
JAR

Config

Java Side WAR File

FFaaiilloovveerr JJ22EEEE AApppplliiccaattiioonn SSeerrvveerr

Figure 1: JNBridgePro Failover Architecture

 1

Technical Note:
JNBridgePro and Clustering

When using failover, the JNBridgePro .NET-side configuration designates a primary Java side and a
failover Java side. The primary Java side is the server that is used when the system starts up. When
communication with the primary Java side fails, the JNBridgePro .NET side throws a FailoverException
and switches the .NET-Java connection so that subsequent calls over JNBridgePro are sent to the failover
Java side. Catching the exception offers the .NET-side client the opportunity to re-create session or state
information on the failover server. As mentioned above, all subsequent calls over JNBridgePro are sent to
the failover Java side until the communications mechanism is explicitly reset through the
FailoverController.reset() API call.

Failover can be used in connection with JNBridgePro’s multiple Java-side capability, in which case the
.NET is configured so that each one of the Java sides being communicated with has a primary server and,
optionally, a failover server.

JNBridgePro’s failover capability has the advantage that it is not dependent on any on any clustering
mechanism offered by any application server vendor. In fact, failover will work even if the Java side does
not offer any clustering capability, and will even work with standalone JVMs in addition to J2EE
application servers.

The failover capability does have some limitations. One cannot assume that the failover server will
contain copies of the remote Java objects referenced by the .NET side that had resided on the failed
primary server. (It is possible that the failover server was running in hot standby mode and was mirroring
requests made to the primary server, but the failover mechanism does not assume this.) The .NET client
may therefore need to re-create session and state information on the failover server, or even restart the
session from scratch, when a FailoverException is received. In addition, if the primary server comes back
up, communications will not be re-established with it until the connection is explicitly reset. Finally, the
failover capability only supports failover functionality; it does not offer any other clustering-related
capability, such as high-availability or load balancing. To get these additional capabilities, it is necessary
to take advantage of vendor-specific clustering mechanisms as described in the next section.

For more information on failover, including configuration and the failover API, see the JNBridgePro
Users’ Guide.

JNBridgePro and vendor-specific clustering

If the user wishes to have .NET code participate in an application server’s clustering mechanism,
JNBridgePro can be used, but a different architecture must be used for the bridging. Figure 2 shows the
architecture when accessing an Enterprise Java Bean in a clustered environment.

Note that the JNBridgePro Java sides are no longer deployed on the J2EE application servers, but rather
are deployed on the client machines. Also note that the EJB client JAR files must be “cluster-aware”: that
is, the EJB client stubs must know how to participate in the J2EE app server vendor’s clustering
mechanism. It is generally the user’s responsibility to assure that they are cluster-aware when the client
stubs are generated.

2

Technical Note:
JNBridgePro and Clustering

.NET Client J2EE Application
Servers (Clustered)

.NET
Code

Proxy
DLL

.NET
Runtime

Component

Shared
Memory

EJB
Client
JAR

EJB
Client
JAR

jnbcore.jar
EJB

Client
JAR

Figure 2: Accessing a EJB in a Clustered Environment

It should be noted that, in this architecture, the .NET/Java gap is bridged, and then communication
between the EJB clients and server JARs occurs over the network. To minimize the effect of this extra
hop, we recommend using the shared-memory communication channel between the Java and .NET sides
as shown in the figure. Shared memory is supported starting with JNBridgePro v2.1.

Using this architecture, .NET client code can participate in all the clustering capabilities offered by the
J2EE application server, including failover, high availability, and load balancing.

Migrating between JNBridgePro failover and vendor-specific clustering

Migrating from a JNBridgePro failover architecture to an architecture employing vendor-specific
clustering is straightforward. Various components, including the JNBridgePro Java runtime component
and the EJB client JAR file must be migrated from the server to the client machines, and configuration
information must be changed to reflect the changes in the location of the various components. No changes
need be made to the code. If the .NET client code was written to handle FailoverExceptions, this code
may be left in since FailoverExceptions will no longer be thrown and the exception handler will no longer
be executed. However, if the user wishes to remove this code as part of the migration process, it is safe to
remove it.

3

Technical Note:
JNBridgePro and Clustering

Migrating from using vendor-specific clustering to JNBridgePro failover requires a bit more effort. In
addition to migrating the various components from the client machine to the server, and modifying the
configuration information to reflect these changes, the user must write code to catch the
FailoverExceptions, which likely will include code to re-create session and state information on the
failover server. The user may also need to write code to explicitly reset the failover mechanism to
communicate with the primary server when it is brought back up.

JNBridge, LLC
www.jnbridge.com

COPYRIGHT © 2004-2005 JNBridge, LLC. All rights reserved. JNBridge is a registered trademark and JNBridgePro and the
JNBridge logo are trademarks of JNBridge, LLC. Java is a registered trademark of Sun Microsystems, Inc. in the United States and
other countries. Other terms and product names may be trademarks or registered trademarks of their respective owners and are
hereby acknowledged.

4

http://www.jnbridge.com/

