—
JNbridge

SPANNING JAVA & .NET

JNBridge JMS Adapter for .NET User’s Guide

Version 4.0

www.jnbridge.com

JNBridge, LLC
www.jnbridge.com

COPYRIGHT © 2008-2016 JNBridge, LLC. All rights reserved.
JNBridge is a registered trademark and JNBridgePro and the JNBridge logo are trademarks of JNBridge, LLC.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Microsoft, Windows, Windows Vista, Windows Server, Visual Studio, .NET and the Windows logo are trademarks, or
registered trademarks of Microsoft Corporation in the United States and/or other countries.

All other marks are the property of their respective owners.

This product includes software developed by the Apache Software Foundation (www.apache.org).

www.jnbridge.com
http://www.apache.org

USERS’ GUIDE

Contents
HOW 10 USE thisS QUIE ...t e e e e e et e e e e e e e e e eaaenn e e e eeeeennnnes 5
Yo [[o] g b= T W =TT oL U ot PRSP 5
ADOUL the @XAMPIE COUE ...ttt et e et e e skt e e et e st e e e e e e eatn e e s nees 5
Overview of the JNBridge JMS Adapter for INET ... 6
L [T Yo 1< PSR 6
Installing, Licensing and Configuring the JMS Adapter..........cuuiiiiiiiiiiiiieeee e 8
Supported Platforms for JNBridge JMS Adapter for INET ... 8
Target Maching Prer@QqUISITES.u e i eeaetesesensnnanan e ens 8
Development ENVIFONMENT Prer@QUISITES. i i ittt e e e e e e e e e e e e e e e e e e et e ae e e eeeeeaeeaaeeeas 8
INSEAIlING the JIMS AAPIET ...ttt e et e e e e e e et e e e e 9
Troubleshooting iNStallation EXCEPONScoiiiiii et 10
Configuring .NET 4.0 SUPPOIT ...ttt ettt e ettt e e st e s et e ettt e et et e s ne e e e eer e e e ebn e e e nnes 10
oY o -1 T PP SPRPRRRRN 10
[Tt FT= 0 1= TSR 11
Licensing and application configuration fileS............uuiiii it e 1"
EVAIUGTION TICENSES ...ttt e oot e e 4ottt e e ekttt e e e ettt e e e e e nntb e e e e e e anbeneeee s 12
L@ a1 g == Vo (12T 1) o SRR PR 12
L@ i 1 T=TR= Tor 111z 1o] o SRS 13
(ot g TS T 4 g F= T P Vo 1= TSP 13
Getting Started: A simple console applicationoooiiiiiiii e 14
Configuring the JNBridge JMS Adapter for INETooo et 14
e oT TS o4 Y71 1= =TSSP 14
64-bit VS. 32-Dit Platfiorms ... o e e e e e e e e e eeeaaaaans 15
K o1 o] = 4] 1 14 I SO OO P PO U PR OPP 15
(S o1 o] =1 0] 10 OO OO P PO PROPRPN 15
UsIiNg the DeSigN-TIMe TOOIcccoiiiiiii et e e e e e e e e e et et ettt et et e et e e e seeeeeeaaaaeaaaeeeeeeeeeeennnnes 16
Opening the Add Adapter Service Reference dialog...........c.uveiiiiiiiiiiii et 16
Choosing the JNBridge JMS Adapter fOr INETccuiiiiii ettt e et e e et e e e e et e e e e e e ssnteeaeeesnsrneeeeaan 16
(070] ol aT=Ter (1 aTo I (o JE= TN 11 NS TS T YT 16
L= ToT0 414V = o TSP ERT R SSRPIR 17
URI PrOPEIHIES 18D ...ttt ekttt et e e e e e st e e ekt e et e e e s nne e e nenee s 17
BiNdiNg Properties tab........coou i n 17
Creating @ C# CHIENT AP CIaSSttt e e e e e e e s e et e e e e eae e e e e e s e sanbesneeeaaaaeeas 18
SEIECHNG OPEIALIONSttt oot e e e et e e e e e e aa e e e e e e saateeeeeesaassaeeee e e sssseeaeeasssseaeeesnsbaaeeesannsnnaeaean 18
LT o=t (o 1= g o = TSRS 19
JMS Adapter Design-Time Configurationcoooioiiiiiiii e 22
Y= Yo U] AV (o] o 1= [PRSPPI 22
L (0T 01T 1= USRI 22
[[Ty Ao o] o= o Y O TP PP RPU PP RPPRP 22
[T ol o] o 1T YOS PUPPOPPRPT 22

Version 4.0 3

USERS’ GUIDE

BINAING PrOPEITIESeeiiiiie ettt e e e e e e e ettt e e e e e e e e e e sa st s s aeeeeaeaeeeeeesanssnbsnnneeeaeaeens 23
1LY S o] o 1= Ta (=Y PP P PP UR RSO 23
81N o T T3 o] o] o 1= o 1 =Y PSP PUPTRT 25
7Y =NV o] o] 0 1= = O PPP 27
Configuring Java when using the Binary TCP Bridgecccuviiiiiiiiiiie ettt 28

Ta] o o]0 le IS T=T AV (ot T o] fo] o =Y o 1TSS EEERRR 30
(T o=t = T o] fo] 1T (=T P TP PP T PR PPPP 31

General and SPECIfIC TIMEOULSuuuuiiiiiiiee it e e e e e e e s e e e e e e eaaeeeeeeesensabeaeeeeaaaaeeas 31

OUtboUNd OPEratioNSo 32

Generic and Named OPEIAtIONSuuiiiiiieeeiii it e e e e e e e e e e e e e e s s et eeeeeaaeeeeesasnsnntesaeeeaaaaeeas 32

Text, Byte and Map Message OPErationseiiiiiiiiiiiiiei et 33
Binary Operations: signed Vs. UNSIGNEA DYES........ccoiiiiiiiiieiie et 33
=T o @) o= = i o] o I OO O PP EPRPU PP SPPRPT 34

Setting JMS MeESSAGE HEAUEIS ..ottt ettt et e e e et e e e s ee e e e annaeeeas 35
Setting delivery delay in @ JMS MeSSAge HEAUETcooiiiiiiieiiieiee et e e et e e e e ataeaeaeean 37

USING MESSAFE SEIECIONS ...ttt et e e e e s bt e e e e e b e e e e e anbaeeaeeas 37

UsiNg DUrable SUDSCIIPHONSuuiiiiiiiiiiee it e e e e e e e e e e e e e e e e e e e s e e s nrenreeaaaaaeeas 37
Unsubscribing from a durable SUDSCIIPLIONcoiiiiiii et e s e e e e e e e e e e s nasreeeeeean 38

Using Durable Shared SUDSCIIPHIONSoiuiiiiiiiii e e e 38

Blocking and ASynchronous OPEIratiONSuuiiiiiiiieieeeiieiciie e e e e e e e e e e e e e e e e e e s e e s areereeaaaaeeeas 39
General and SPECIIC TIME-0ULS........couiiiie ittt e et e e e e et e e e e e st eee e e e s e sasaeeaeeassseeeeessntseeeeesassaneeansn 39
ASYNCNIONOUS OPEIATIONS.ciiitiie ittt ettt ettt e e et e ettt e e n et e e emae e e e te e e e an et e e amaeeeateeeeanteeesnneeeennneeenns 40

Inbound OperatioNs @nd SEIVICESooiiiiiiiiiiiiiieeeeee ettt e e e e e e e 42

Ta] o o]0 le M@ oT=Tx=T1Te] o 1< TSP PPPPPR 42
Configuring INDOUNG OPEIATIONS.........cuiieiie et e ettt e e et e e e e e st e e e e e st eeee e e e saseeeaeeassseeaeeesnsseeeeesassnneeaean 44
Using an Exception Listener INDOUNG SEIVICEcooiiiiiiiiiiiiie ettt e s neee s 45

L= 10 1ST=Tex 1 o] o 1S O PROPTP PR 47

1A L= (e 110 g I @ o= = o] o TSP 47
Enable Transactions OPEIatioNS............ooiiiiuuiiiieiiiiiie ettt e e e e e e e e et e e e e e e asbe e e e e s sassseeeaeeessssseaeeesanssneeeanan 47
Commit TranSACtION OPEIAtiONScc.uuiiiei it e ettt e e e ettt e e e e e e eeeeesateeeee e s e sasseeaeeasssseeeessnsaeeeessassnneeansn 47
Rollback Transaction OPEratiOnSciiiiiiuiiiii e e it e ettt e e e et e e e e e et e e e e e et e e e e e e sasaeeeeessassseeeeeseasssseaeessssseneeansn 48

[D1=To][0) YT aTe IS To] (U1 o] o - TP PP PPPPPPPPPPPPN: 49

RUN-tIME SECUNItY CredENTIAlSeviiiiiiii ettt e e e e e e e e et e e e e e e e e e e s berreeeaaaaeeas 49

LA LCI S L1 =1 g et 0] o] (o T PP PO PRPP 49
TIPS @NA THCKS oo 51

UsE the GENEIIC OPEIatiONS.........uiiiiiiiiiii ettt e et e e e e e e e e e e e st e e e e eeaeaeeesesaasanbnneeeeaaeaeens 51

LAY oy Q0 1TSS 51

Debug connection or JNDI ProDIEMIScoeeiiiee ettt eeeeeennnees 52

When working on-line with the Add Adapter Service Reference design-time toolcccooviiiiinnnen. 52

4 Version 4.0

USERS’ GUIDE

How to use this guide

This guide contains information about installing, configuring, and using the JNBridge JMS Adapter for
NET. It is organized according to the particular task or tasks you wish to perform with the JMS Adapter.

Please read the section, Installing, Licensing and Configuring the JMS Adapter, before attempting to
install and configure the adapter.

All users are encouraged to read the section, Overview of the JNBridge JMS Adapter for .NET. It
gives information on the architecture of the JMS Adapter, how it works and the various scenarios in
which it can be used.

The section, Getting Started: A simple console application, gives the developer a brief introduction
on how to use the JNBridge JMS Adapter for .NET within Visual Studio including configuration,
operation selection, code generation, application development and deployment.

Users who have purchased licenses or are planning a deployment of the JNBridge JMS Adapter for
NET, should read the section, Licensing the JNBridge JMS Adapter, which describes the various
licensing mechanisms, and discusses the various ways of deploying license keys.

Additional resources

For specific configuration of several popular JMS implementations, please see the individual
configuration guides, e.g. UsingDotNetAdapterActiveMQ.pdf.

The JNBridge knowledge base, www.jnbridge.com/jn/kb, can also be searched for issues, work-
arounds and general information.

About the example code

While the code examples within this guide are all written in C#, the JNBridge JMS Adapter for .NET
supports VB .NET Visual Studio projects and VB .NET code generation.

Version 4.0 5

USERS’ GUIDE

Overview of the JNBridge JMS Adapter for .NET

The JNBridge JMS Adapter for .NET allows enterprise IT developers to integrate any Java Message
Service (JMS) implementation into C# or VB .NET applications. The JMS Adapter uses the
interoperability technology from JNBridge to integrate the Java implementation of any vendor’s 1.1 or 2.0
compliant JMS into .NET. This includes ActiveMQ, JBoss, IBM WebSphere, Tibco Enterprise Message
Service, Oracle WebLogic, Oracle AQ, SonicMQ, Sun Glassfish and Open MQ. Additionally, the JMS
Adapter uses the Windows Communication Foundation to encapsulate the resulting JMS client into a
WCEF Line of Business adapter. The WCF LOB adapter framework integrates into Visual Studio, providing

a development environment to consume the JNBridge

JMS Adapter as a WCF endpoint.

The JNBridge JMS Adapter for .NET exposes a simple interface for producing and consuming JMS
messages to and from queues and topics. The complexities of building a JMS client from the Java class
API are hidden from the developer. The JMS Adapter requires no modification to the JMS server. Nor
does it require any specific .NET support from a JMS vendor—all that is required is a vendor’s standard
Java implementation. The support for any vendor’s JMS implementation is accomplished through the
JNBridge Java and .NET interoperability product, INBridgePro. For more information on JNBridgePro,

visit www.jnbridge.com.

How it works

At design time, the JNBridge JMS
Adapter for .NET uses a Visual Studio
plug-in interface to provide integration
and configuration information. With this
Add Adapter Service Reference plug-
in, you can explore the available JMS
queues and topics, select the send and

Select a binding

Disconnect

JNBridge Dot NetdM S AdapterBinding

Select contract type:
Cliert (Outbound operations)

Select a category:

Add Adapter Service Reference

Configure a URI
jms:/Aocalhost 8080/
Example:

Connection status: Connected

Search in category: "Topics“Generic Topics' Text

| @

Ayailable categories and operations:

-/

receive operations to be performed and the
optional queues and topics to be accessed.
You can chose specific send and receive
operations particular to the queues and
topics found on any JMS implementation.
Additionally, it is possible to work off-line,
when access to a JMS server is impossible,
and use generic send and receive
operations.

= Queues

=N

= Topics

=8

(- Configuration

© [Generic Queues

[=)- Generic Topics

]

Node ID o

/Topics/Generic Topics/Text/publi

/Topics/Generic Topics/Text/publi

/Topics/Generic Topics/Text/subs

/Topics/Generic Topics/Text/subs

Tarics MRaneir Tanics /Tevt Mes
>

Name
& PublishText
=@ PublishAnnatated Text

= bscribeText
=@ Subscribs Text Tmeout

¢ Wessans Selertars
<

Configuration
Text
i Message Selectors
Binary
Map
Transactions

Added categories and operations:
Name Node ID

=@ SendAnnotated Text /Queues/Generic Queues/Text/send_annotated_t
=% SubscribeSharedDur... /Topics/Generic Topics/Binary/Durable Sslect Sh

Corfiguration

Binary

WMessage Selectors

Durable Subscriptions

Durable Shared Subscripti

Durable Select Subscriptic

Durable Select Shared Su v
>

Remove All

Upon closing the Add Adapter Service
Reference dialog, the plug-in will generate

Advanced gptions

Fleniame prefix
[IMSAdapterBinding

0K Cancel

Figure 1. Add Adapter Service Reference

Version 4.0

www.jnbridge.com

USERS’ GUIDE

a C# or VB client API class containing the selected JMS operations and their queue and topic destinations.
By using that API, you can send and receive messages in the .NET application you’re developing. The
resulting application will send messages to, and receive messages from, the indicated JMS server using
simple .NET data types. The adapter supports both blocking and non-blocking receive operations as well
as the ability to create a message-driven WCF service that can receive messages asynchronously.

The underlying technology that supports any JMS implementation is JNBridgePro, JNBridge’s Java and
NET interoperability product. INBridgePro can be used to access any Java API from .NET, or any .NET
API from Java. The JMS adapters implement JNBridgePro’s interoperability technology to access the
JMS API automatically. The figure below shows the architecture of the JMS Adapter for .NET.

The adapter contains both a .NET side running in a CLR and a Java side running in a JVM, where
the CLR and the JVM are running in the same process. JNBridgePro manages inter-platform

Machine

Machine

End User subclass of
generated client proxy

JNBridge Functional Abstraction | JNBridge

WCF LOB of JMS/JNDI Client
Generated WCF Client Proxy Adapter Net
Framework ‘ . sendTextToQueue_myQi) proxies
[OperafionContract] Design time . JMS/IJNDI
sendTextToQueue_myQ() Run time ?«2:::;" receiveTextFromQueue_myQ{) Client
Support Arguments Java
[CperafionContract] and Results classes

reciveTextFromQueue_myQ()

]

Figure 2. Architecture of the JNBridge JMS Adapter for NET

communications. The JMS client classes are those provided by the vendor, which guarantees that the
adapter will work with any vendor’s JMS server. The framework that interfaces with a .NET application is
Microsoft’s WCF Line-of-Business Adapter SDK.

The sample operations in Figure 2, sendTextToQueue_myQ() and receiveTextFromQueue_myQ(), are
named operations constructed by the INBridge JMS Adapter—the result of browsing the JMS server
during design time. The resulting .NET solution can be deployed to any machine where the run-time
environment has been installed.

Version 4.0 7

USERS’ GUIDE

Installing, Licensing and Configuring the JMS Adapter

The JNBridge JMS Adapter for .NET is automatically installed in two different configurations:

B A development environment providing a Visual Studio plug-in enabling the Add Adapter Service
Reference design-time capabilities. This configuration is installed if Visual Studio is found on the
target machine

B A run-time environment for solution deployment. This configuration is installed if Visual Studio is not
found on the target machine.

Supported Platforms for JNBridge JMS Adapter for .NET

Windows Vista, x86 and x64.
Windows 7, x86 and x64.

Windows Server 2008, x86 and x64.
Windows Server 2008/R2.
Windows Server 2012/R2

Target Machine Prerequisites

The following minimum prerequisites are needed for either of the two environments.

B The .NET 3.5 SP1 Framework must be installed on the target machine. The framework may be
downloaded from Microsoft. For 64-bit platforms, if x64 processes are targeted, the x64 .NET
framework must be installed. In addition, the adapter supports the NET 4.0, 4.5, 4.5.1 and 4.6.

B A Java Run-time Environment (JRE) must be installed on the target machine. The JNBridge JMS
Adapter supports the Standard Edition JRE 7 or above. For 64-bit platforms, if x64 processes are
targeted, a x64 JRE and a x86 JRE must be installed.

B On a 64-bit platform, the x86 java.exe must be in \Windows\SysWOW64 and the x64 java.exe
must be in \Windows\system32.

B For any given JMS implementation, the JMS Java client environment must be installed including all
JAR files as well as any additional configuration such as environment variables or configuration files.

Development Environment Prerequisites

B Visual Studio 2010, 2012, 2013 or 2015 must be installed prior to the installation of the JNBridge
JMS Adapter.

o

All running instances of Visual Studio must be closed prior to installing the design-
time plug-in.

8 Version 4.0

USERS’ GUIDE

Installing the JMS Adapter

The installation of the JMS Adapter requires administrator privileges on the target machine. The
installation consists of a single installation.

Start the installation by executing the Windows Installer, e.g. InstallNetIMSAdapter_40.exe. This is a
simple installation allowing the user to accept the EULA (End User License Agreement) and to choose
either a deployment or development environment and a target installation directory.

If updating a previous version of the adapter, it is necessary to uninstall that previous version. If you are
uninstalling an earlier development environment, please exit all instances of Visual Studio. If you have
configuration information in the bind.properties file, please move that file from the installation
directory before uninstalling the previous version. After installing version 4.0, you may copy the bind.
properties file back to the installation directory.

The following runtime components are installed for a deployment environment:

e The assembly, JNBridgeDotNetJMSAdapter.dll is placed in the adapter’s \bin directory, e.g. C:\
Program Files\JNBridge\JMSAdapters\DotNet\bin. The assembly, also installed in the GAC,
provides core functionality.

e The assemblies, JNBShare.dll, JNBShareMem_x86.dIl (and JNBSharedMem_x64.dIl on a 64-bit
platform) and JNBridgeJMSCore.dll, provide the .NET-to-Java bridge between the Java Virtual
Machine and the Common Language Runtime. They are installed in the GAC. There are two versions
of the assembly, jnbproxies.dll, one for JMS 1.1 and one for JMS 2.0, installed under the \bin
directory.

e The library, jnbauth_x86.dll and/or jnsauth_x64.dll, contains licensing functionality and is placed in
the \bin directory.

o The assemblies, Microsoft.ServiceModel.Channels.dll and Microsoft.ServiceModel.Channels.Tools.
MetadataSearchBrowse.dll represent the runtime components of Microsoft’s WCF Line-Of-Business
(LOB) adapter framework. These files are placed in the \bin directory and are also placed in the
GAC.

e [fa development environment is installed, then an additional assembly from Microsoft’s WCF LOB
framework, Microsoft.ServiceModel.Channels.Tools.PluginPackage.dll, is installed in the \bin
directory and the GAC. This assembly provides the WCF LOB design tool, Add Adapter Service
Reference, in Visual Studio.

Version 4.0 9

USERS’ GUIDE

Troubleshooting installation exceptions

B [f, when the adapter is first used in Visual Studio, a dialog appears complaining about the inability to

o—n

find the assembly Microsoft.ServiceModel.Channels.dll, or the Add Adapter Service Reference dialog
throws an exception when used, then a configuration line may not have been properly added to the
machine.config files. Please follow these instructions.

Navigate to the directory \WINDOWS\Microsoft.NET\Framework\v2.0.50727\CONFIG and open
the file machine. config in a text editor.

Find the XML element <bindingExtensions> and, if not present already, insert the <add> element
for the custom WCF JNBridgeDotNetJMSAdapterBinding, shown below.

<system.serviceModel>
<extensions>
<bindingExtensions>
<add name="JNBridgeDotNetJMSAdapterBinding”
type="JNBridge.JMSAdapter.JMSAdapterBindingCollectionElement,

JNBridgeDotNetJMSAdapter,
Version=4.0.0.0, Culture=neutral, PublicKeyToken=b18a44fb28aea122” />

</bindingExtensions>

Repeat with the other machine.configfile in . . .\Framework\v4.0.30319\Config directory. If

the platform is 64-bit, also check the configration files in the .. .\Framework64\ hive. The element
added to the 64-bit file is identical to the element added to the 32-bit files.

The the adapter will install and work on a 64-bit platform using either 32-bit or 64-bit
targeted processes. A 32-bit process requires a x86 JRE. A 64-bit process requires a
x64 JRE.

Configuring .NET 4.0 support

When building a VS 2010, 2012 or 2013 project, the target framework run-time can be either be the NET
2.0/3.5 or .NET 4.0 CLR. If the target is .NET 4.0, the following XML may have to be placed in the
generated app . config file:

<startup useLegacyV2RuntimeActivationPolicy="true”>
<supportedRuntime version="v4.0"/>
</startup>

Licensing

The JMS adapter must be licensed on each machine on which it is installed. JNBridge supports a variety
of license types. For more information, please visit www.jnbridge.com/JMS-NET-Adapter-licensing.htm.

!

If you have used versions of the JMS adapter older than version 3.0, note that
starting with v3.0 we have introduced a new licensing mechanism. The concepts and
components described below will be different from those you might have used in
previous versions.

10

Version 4.0

http://www.jnbridge.com/JMS-NET-Adapter-licensing.htm

USERS’ GUIDE

License files

For most types of licenses, the license is encapsulated in a license file, which is a text file whose suffix is
Jic. (The file’s name is generally assigned by JNBridge’s license tracking mechanism.)

When a license file is present, the Visual Studio Plug-in, and your application that uses the JNBridge JMS
adapter for .NET, will look for the license file in the following locations, in order, until a license file is
found:

e The location specified in the application’s app.config file.
e The folder in which the application’s executable file resides.
e The adapter installation folder, e.g. C:\Program Files\JNBridge\JMSAdapters\DotNet.

If an invalid license file is found, an /nvalidLicenseException is thrown. The adapter will register
the exception in the system application event log. If error logging is enabled in the adapter, the
InvalidLicenseException will also be logged. A license file can be invalid for a number of reasons,
including:

e It has been tampered with.
e It is time-limited and has expired.

e [t is node-locked, and is being used on a machine other than the one to which the original license was
locked.

Licensing and application configuration files

You have the option of specifying the location of your license file, or, if you are using a license server, the
location (host and port) of the license server. This can be done by modifying the configuration file for the
application you’re developing that uses the JMS adapter.

Inside the <configuration> section of the application’s configuration file, add the following section if it is
not already there:

<configSections>
<sectionGroup name="jnbridge”>
<section name="licenselLocation” type="System.Configuration.SingleTagSectionHandler”/>
</sectionGroup>

</configSections>

Inside the <jnbridge> section, add the following line:

<licenseLocation directory="absolute/relative path to directory containing license file”/>
or
<licenselLocation host="license server machine” port=”license server port”/>

Choose the first variant if you are using a license file; choose the second variant if you are using a
license server. Again, specifying this information is optional. If you omit it, the licensing mechanism
will continue looking for the license in the adapter’s root installation directory. Here, it is also possible to

Version 4.0 11

USERS’ GUIDE

place the license manager’s host name and port number into a license file. The format of the file must be

the following and the file must end in ‘.lic’:

HOST [hostname]
ISV jnbridge

[port]

Evaluation licenses

As part of the download process, you will be emailed an activation key for a 30-day evaluation license.
When you receive this key, enter it in the JMS adapter’s registration tool, shown in Figure 4, under the
Online License Activation tab and click on the Activate License button. This will allow you to use the JMS
adapter on a trial basis for 30 days. (See the section, On-line activation, below, for additional details.) You
must perform this action before you can begin your evaluation.

The evaluation license file that is obtained through this activation is node-locked, and cannot be copied
to other machines. If do you wish to place evaluation installations of the adapter on additional machines,
you can enter the same activation key into the registration tool on the new machines at any time and

receive 30-day evaluation licenses on those machines.
Please note that any deployments and installations using
evaluation licenses obtained through this activation key
will stop working after the 30-day evaluation period
expires. Also note that, under the terms of your JNBridge
JMS adapter for .NET license, you may not use your
evaluation license to run production applications.

It is important to note that this activation key cannot

be used twice on any given machine. If you need an
extension to your 30-day evaluation period, please

visit www.jnbridge.com/swreg.htm and follow the
instructions there, or contact registration@jnbridge.com.

In the event that your deployment does not have Internet
connectivity, please follow the instructions in the section
“Off-line activation,” below.

On-line activation

Once you have purchased adapter licenses, you will
receive an activation key. If the machines on which

you will be licensing the adapters have access to the
Internet, you can use this activation key to claim your
licenses. To do so, you must use the adapter registration
tool (RegistrationTool.exe) on each of the machines

to be licensed. The registration tool will be part of the
installation. Launch the registration tool, and select the
Online License Activation tab (Figure 4).

Paste the activation key into the Enter Activation Key slot

Register JNBridge JMS Adapter for NET

License Requests Online License Adtivation Offfine License Activation Use License Manager

Purchase License

Modify Cument License

JNBridge JMS adapter for MET, v4.0.0 {64} trial

© 2001-2015, JNBridge, LLC. All rights reserved

There are 33 days left in your trial license

lUcense location: C:\Program Files"JNBridge\JMSAdapters\DotNet

Close

Register JNBridge JMS Adapter for BizTalk Server

License Requests Online License Activation Offline License Activation Use License Manager

Enter Activation Key |

Activate License Prasy Server URL

JNBridge JMS adapter for BizTalk Server, v4.0.0 {c64) trial

© 2001-2015, JNBridge, LLC. All rights reserved.

There are 31 days left in your tial license.

License location: C:\Program Files'\.JNBridge‘JMSAdapters\BTS2006

Close

Figure 4. The Registration Tool and online
activation

12

Version 4.0

USERS’ GUIDE

and click on the Activate License button. If you have licenses left to activate, the operation will succeed
and your installation will be licensed. The license file will be placed in the adapter’s root installation
directory.

If you have no more licenses, or the operation otherwise fails, you will see an error message indicating the
reason for the failure.

If you believe you have Internet access, an attempt to activate a license may result in this error message:

This error may be the result of using a proxy server for internet access. If a proxy server is
being used, then online activation requires that the environment variable HTTP_PROXY
be set before running the Registration Tool. The syntax for setting the HTTP_PROXY
environment variable is: HTTP_PROXY=http.//[proxy_server _url]:[portl/

Alternatively, you may click on the button, Proxy Server URL, on the Online License Activation tab and
set the proxy server’s hostname and port number.

Off-line activation

In the event that the machines on which you want to license the adapter do not have Internet connectivity,
you can claim a license by launching the registration tool, then selecting the Offline License Activation tab
(Figure 5a).

Click the Request License button and follow the instructions in the displayed page, or copy the displayed
registration key into an email and mail the license request to registration@jnbridge.com, or visit www.
jnbridge.com/swreg.htm and follow the instructions there, supplying the registration key when requested.
In response, you will be emailed a license file that you should deploy to the adapter root installation
directory, e.g. C:\Program Files\JNBridge\JMSAdapters\DotNet.

License managers

Certain types of licenses, including floating licenses, as well as licenses that will run on terminal servers
and virtual machines, require the use of a license manager. If you have purchased these licenses, JNBridge
will supply you with a license manager, which you should install and configure according to instructions
that are included with the license manager.

To use a license served up by a license manager, you will need to configure the adapter to point to point
the license manager. See Licensing and application configuration files, above, for a discussion of how to
do this.

The registration tool provides some assistance in doing this. When the Use License Manager tab is
selected (Figure 5b), the user has the option of entering the hostname and port of the license manager
(that is, the hostname of the machine on which the license manager resides, and the port on which it is
listening). Once those values are entered, clicking on the Load License button will test whether these
values are correctly configured, and, if they are, clicking on the Export Config File button will cause a
fragment of XML containing the configuration information to be output to a file. The contents of the file
can be incorporated into the application configuration file.

Version 4.0 13

USERS’ GUIDE

Please note the following:

Register JNBridge JMS Adapter for NET

e Clicking the Load License button does not
obtain a license for the application being
licensed. It is still necessary to add information
to the application configuration file that points Request License
to the license manager.

License Requests Orline License Activation Ofﬂ‘ Use License Manager

Registration Key |ne{-de\rdv4.D-6-‘l»DDGa“?c123b Copy

1 i JNEridge JMS ad; for NET, v4.0.0
e Ifyou have clicked on the IToad Llcgnse l?utton, B MS adaperfor NET, V400664
we recommend that you exit the registration
tool before running your application. O oo Fios INEndge Shdapers Dothe b

C:\Program Files‘JMNBridge“JMSAdapterstDotNet
C:\Program Files\JMBridge"JMSAdapters'.Dot Net\bin

e Use of the functionality in the Use License
Manager tab is completely optional and is
provided as a convenience. It is entirely
possible to configure the application manually,
without the assistance of this tool. Figure 5a. Offline activation

Getting Started: A simple
console application

Close

Register JNBridge JMS Adapter for NET

License Requests Online License Activation Offine License Activation Use License Manager

. . . . Erter License Manager Hostname Load License
What follows is a quick example of integrating
JMS into a simple C# .NET console program using Emer License anager Por Sz i
the INBridge JMS Adapter for .NET, Visual Studio
and the design-time features of the WCF Line-of- T
Business adapter framework. License location: C:\Program Fies\JNBridge’\JMSAdapters\Dothet

License found: Desktop Developmert License

The JNBridge JMS Adapter is encapsulated as
a WCF custom transport and binding. The JMS
Adapter uses WCF to present available operations Closs
specific to a JMS implementation. As a WCF Enieqthelporinumbenforthelicenselmanagey

Figure 5b. Pointing to a license manager.

Configuring the JNBridge JMS Adapter for .NET

The JMS Adapter requires very little configuration prior to development and deployment. Most
configuration, such as connecting to a JMS server is done by interacting with the Add Adapter Service
Reference development tool or by editing the application config file.

Access privileges

A developer or the account under which a .NET application will execute must have full access to the file
bind.properties. This file is found in the target directory where the JMS Adapter is installed. The
default location is \Program Files\JNBridge\JMSAdapters\DotNet\bin\bind.properties.

14 Version 4.0

USERS’ GUIDE

64-bit vs. 32-bit platforms

The JNBridge JMS Adapter for .NET targets x86 processes on a 32-bit platform. On a 64-bit platform, the
adapter targets both x86 and x64 processes.

32-bit platforms

B Required JRE

An x86 targeted application requires a 32-bit JRE.

B Visual Studio build targets

When using the .NET adapter for JMS on a 32-bit platform, the project properties within
Visual Studio can be set to Any CPU or x86. If the resulting application is used on a 64-bit
platform, the build target must be set to x86.

64-bit platforms

B Required JRE
If the adapter is installed on a 64-bit platform, both a x64 JRE and a x86 JRE are required.

The x86 JRE is required during development in Visual Studio when using the Add Adapter
Service Reference wizard to connect to a JMS Server. During design-time, Visual Studio will
look for the x86 Java bootstrap executable, java.exe, in \Windows\SysWOW64.

During run-time, the adapter will use the x64 JVM, jvm.d11, configured in the JVM Path
property. The x64 version of the adapter will not work with a x86 JVM during run-time.

-

« The installation program for a x86 JRE may not correctly place the Java bootstrap
executable, java.exe, in \Windows\SysWOW@64. The executable may have to be copied
manually. It will not be found in \Windows\system32 by Visual Studio.

-

« Ifthe only available JRE is x64, it is possible to manually copy the x64 bootstrap
executable, java.exe, into \Windows\SysWOW@64. This is not recommended as other
x86 programs may expect a 32-bit JRE.

B Visual Studio build targets

The build target must be set to x86, x64 or AnyCPU. If it is set to x86, the application will
require a 32-bit JVM. If it is set to x64, the application will require a 64-bit JVM. If the target
is AnyCPU and the application is executed on a 64-bit platform, the JVM must be 64-bit.

If the application is executed on a 32-bit platform, the JVM must be 32-bit. Please see the
section JVM Path for more information on configuring JVMs.

Version 4.0 15

USERS’ GUIDE

endpoint, the Adapter—along with the metadata describing the interface chosen by the developer—can
generate C# .NET client API classes that implement the chosen operations as class methods.

|

« While this console application example uses the C# language, the JNBridge JMS

Adapter for .NET can generate VB code if the project is a VB project rather than a C#

project.

Using the Design-Time Tool

Within a Visual Studio, the first step is to create a new C# Console application project and then invoke the

Add Adapter Service Reference dialog.

Opening the Add Adapter Service Reference dialog

In the Solution Explorer find the References
node and right-click to bring up the context
menu. Choose the Add Adapter Service
Reference menu choice. The dialog box, shown
in Figure 6, is different than the one shown

in Figure 1—it has not been configured or
connected to a JMS Server.

Choosing the JNBridge JMS Adapter for
.NET

Open the drop-down list control

titled Select a binding and choose
JNBridgeDotNetJMSAdapterBinding. The dialog
will become active and enable the buttons
Connect and Configure and place a default
Uniform Resource Identifier (UR]) in the editable
text field Configure a URI.

Connecting to a JMS Server

Add Adapter Service Reference

Select a binding: Configure a URI

Example:
Connection status: Disconnected
Select contract type:

Search in category: /

Select a category: Ayailable categories and operations:

Name Node ID

Added categories and operations:

Name Node 1D

Filename prefix

Figure 6. An unconfigured, unconnected Add Adapter
Service Reference dialog

The URI displayed in the Configure a URI text field is specific to the INBridge JMS Adapter WCF custom
binding—it is not the connect URL specific to the JMS server implementation. While the URI will contain
information needed to ultimately connect to the server, such as host name and port, other configuration
information is included specific to WCF and the INBridge JMS Adapter. To properly connect to the IMS

16

Version 4.0

USERS’ GUIDE

server, the Configure Adapter dialog box, shown in Figure 7, must be opened by clicking on the button
titled Configure. The Configure Adapter dialog box contains three tabs: Security, URI Properties and
Binding Properties that will require some configuration.

Security tab
Configure Adapter
Securty URI Properties Binding Properties
Client credential type: Usemame v
User name credentials
User name: fimsuser |
Password — |
Browse Remove
Cance

Figure 7. The Configure Adapter
dialog open to the security tab

URI Properties tab

Figure 8 shows the URI Properties tab open in the Configure Adapter
dialog box. This tab requests the machine name and port number in
order to connect to the JMS server.

Binding Properties tab

The Configure Adapter dialog box, Figure 7, is open to the Security
tab. The drop-down control titled Client credential type contains four
choices: None, Windows, Username or Certificate. The credential
type chosen is dependent on the adapter binding. For the JNBridge
IMS Adapter, the credential type is that of the JMS server security
implementation—Dby default credential type Username.

Configure Adapter

erties | Binding Properties

v Connection
Host localhost
Port 8080

Host
Enter the JMS provider host name

Cancel

Figure 8. The URI Properties tab

Figure 9 shows the Binding Properties tab open in the Configure Adapter dialog box. Bindings are
properties whose values determine how the JNBridge JMS Adapter connects to a JMS server. There are
five categories of binding properties.

B General Binding properties are default time-outs for the operations Open, Close, Receive and Send.
For more information on system time-outs, see the section titled General and Specific Time-outs.

B Behavior Bindings determine the connection mode for on-line development and transaction

enlistment.

B Inbound Service bindings are used when building a WCF listener service to receive JMS messages.
For more information on inbound services see the section titled /nbound Operations and Services.

Version 4.0

17

USERS’ GUIDE

B JMS Bindings are the J2EE properties required to connect Configure Adapter

to any JMS server. Figure 9 shows the JMS binding _ _
properties of a default configuration for a JBoss server.] v Propets
They are discussed in detail, below. o - 00-01-00 .
MName JMSAdapterBinding
B UNBridge Bindings are used by the .NET-to-Java inter- OponTiems _ 00010
operability technology that allows the INBridge JMS SendTmeout 00:01:00
Adapter to support any JMS implementation. Transaction Enlistmert False
Work Off Line True
v Inbound Service
JMS Durable Subscription sharedDurableSub_4
JMS Message Selector
o1 : : : Poll Period 10
For the purposes of this 1ntr0duct1.on to creating a simple o o
console program to send and receive messages assume that . iava:nmnopacfsharedrow
the Configure Adapter dialog box has been fully configured Chooss JVIS Vendor ~ JBoss
. . . . Client 1D
for on-line development. For an extensive discussion of ot Conecion g
all binding properties, please see the section JMS Adapter I s i | A O EoaE |
Design-time Configuration. e
JMS Version JMS 2.0
. . Queue Facto jms/RemoteConnectionFac!
To complete connecting to the JMS server, close the Configure TDpic_Fadoryw jms/ RemoteConnectionFac
Adapter dialog box by clicking on OK. In the Add Adapter ==
Service Reference dialog the field Configure a URI will reflect e e
1 1 1 JVM Arguments
the configured machine name and port. Finally, click the oy fgument c —
button Connect to connect to the JMS server. Pott Number
Use S5 bridge False v
Topic Name
' ; . R Suppl)fthe JMS topic name {used only for generic inbound
« Hot Tip: Many times, connecting to the JMS server i)
with the Add Adapter Service Reference dialog may
be difficult due to server availability, configuration Cancel
issues and network problems. Consider working
off-line. See the section Tips and Tricks for more Figure 9. The Binding Properties tab.
information.

Creating a C# client API class

The goal of the INBridge JMS Adapter is to generate a C# client class containing an API of operations
specifically selected by a developer targeting a JMS implementation. The API can be used to easily
integrate any JMS implementation into a .NET solution.

Selecting operations

After clicking on Connect in the Add Adapter Service Reference dialog, the JNBridge JMS Adapter
connects with the JMS server and searches for existing queues and topics. Using this information, the
JMS Adapter constructs an operation interface for the JMS server. The operation interface consists of
categories of specific and generic operations to send and receive messages between the .NET application

18 Version 4.0

USERS’ GUIDE

and the JMS server. Operations can send and receive—to and from queues and topics—different types
of JMS messages, set message headers and properties, receive specific messages based on headers and
properties, and use durable topic subscriptions. These operations use simple .NET data types or simple
data structures defined in the generated client class.

Figure 10 shows the Add Adapter Service Reference dialog. Categories of operations are shown on

the left in the pane Select a category. Individual operations in each category are shown in the upper
horizontal pane Available categories and operations. Operations that have been selected are shown in the
pane Added categories and operations.

The two selected operations are generic operations—they are general to queues and topics, in this case, a
shared topic, a feature only found in JMS 2.0. Generic operations are unnamed—they can send or receive
messages to and from any queue or topic. Named operations—the operation name is qualified with the
JMS destination name—are not as flexible as generic operations, where the targeted JMS destination is an
argument to the operation. For greater detail concerning operations, see the sections Outbound Operations
and Inbound Operations and Services.

Generate client classes

After the operations have been selected by the developer, clicking OK will generate C# files containing
the API classes and the application configuration file, app . config. Figure 11 shows a C# source file. The
two underlined lines of code are the generic operations in the interface class JNBridgeJmsAdapter that
will be executed by the INBridge
JMS Adapter. The implementation
Ofthe lnterface 1S 1n the Class i:;‘;;&i’:::tqmSAdaDterB\ndiﬂg iusnﬁﬁ:;iuu:l%:%:
JNBridgeJmsAdapterClient.

Both classes are in the file
JmsAdapterBindingClient.

Add Adapter Service Reference

Bxample:

Disconnect Connection status- Connected

Ccs. The generic CIaSS SyStem . Select contract type: Search in category: \Topics\Generic TopicshText
ServiceModel.ClientBase provides i pasiors) - |
the public methods that constitute ——i e o -
the lnterface that IS Called by WCF gzjliimhun = Publish Test /Topics/Generic Topics/Text/publi
Additionally, ClientBase provides T Voo iaicoudi fisuitiisiioron

=) Text =8 Subscribe Teod Timeout /Topics/Generic Topics/Text/subs

Message Selectors @18 Massane Salactors Tonire ARanerir Toniee/Te /Mes:
< >

public properties to the developer
to set security credentials and

w

; Binary
(- Map

get the WCF ChannelFactory, b Transactons
. & Topics Added categories and operations:
Endpoint and Channel. For an - Gonertc Topics - S
. . . i-- Configuration
example of using public properties “WSendArmotatedText /Queuss/Generic Queces Text/send_annotated 4
E Birary =@ Subscribe SharedDur... /Topics/Generic Topics/Binary/Durable Select Sh...

H Message Selectors

H Durable Subscriptions

¢ [~ Durable Shared Subscripti
Durable Select Subscriptic
Durable Select Shared Su v

< > Remove Al

Filename: prefoc

Advanced options |JMSM3M9fBindiﬂQ | | 0K | Cancel

Figure 10. The design tool connected to a JMS server showing
operations

Version 4.0 19

USERS’ GUIDE

to set credentials, see Deploying Solutions.

Figure 12 shows the app . config file. This XML document contains all of the information required to
create the INBridge JMS Adapter WCF custom binding and transport. The XML document also contains
the information to connect to the JMS server. This binding and connection information is used by the
resulting .NET solution, written against the client classes contained in JMSAdapterBindingClient.
cs, to correctly connect to the JMS server during runtime. The information in app . config is equivalent
to the information contained in the Configure Adapter dialog during design-time. The file must be
deployed with the application. For further information on using the app . config file, see Deploying

Solutions.

IMSAdapterBindingClient.cs # > [[fels[gT) Reis

[consoleApplicationd

-| *0 JNBridgelmsAdapter ~|® SendAnnctatedText(string name, jnbridge.jn

R e A i
f/f <auto-generated>

i This code was generated by a tool.

s Runtime Version:4.8.38319.42808

i

i Changes to this file may cause incorrect behavier and will be lost if

f the code is regenerated.

ff </auto-generated>

= m == e

[assembly: System.Runtime.Serialization.ContractMamespaceAttribute(”ims://INBridge.JIMSAdapter”
, ClrNamespace="jnbridge.jmsadapter"”)]
[System.CodeDom.Compiler.GeneratedCodeAttribute("system.ServiceModel”, "4.8.8.8")]
[System.ServiceModel.ServiceContractAttribute{Namespace="jms://INBridge.IMSAdapter"
, ConfigurationName="JNBridgelmsAdapter™)]
public interface INBridgelmsAdapter {

[System.ServiceModel.OperationContractAttribute(Action="/Queues/Generic Queues/Text/send_annotated_text_any_q",
ReplyAction="/Queues/Generic Queues/Text/send_annotated_text_any_g/response”)]
vold SendAnnotatedText(string name, jnbridge.jmsadapter.J]MSMessageHeader messageHeader, string text);

[System.ServiceModel.OperationContractAttribute(
Action="/Topics/Generic Topics/Text/Durable Select Shared Subscriptions/subscribe_durable” +
"_select_text_any_shared_tpc",
ReplyAction="/Topics/Generic Topics/Text/Durable Select Shared Subscriptions/subscribe_durable" +
"_select_text_any_shared_tpc/response”)]

string SubscribeSharedDurableSelectText(string name, string selector, string durableSubscriptionName);

H

[System.Diagnostics.DebuggerStepThroughAttribute()]
[System.CodeDom.Compiler.GeneratedCodefdttribute("System.ServiceModel™, "4.8.8.8")]
public partial class INBridgelmsAdapterClient : System.ServiceModel.ClientBase<JINBridgelmsAdapter>
» INBridgelmsAdapter {
public JNBridgeImsAdapterClient() {

public INBridgeImsAdapterClient(string endpointConfigurationName) : base{endpointConfigurationName) {}
public JNBridgeImsAdapterClient(string endpointConfigurationName
, string remotefddress) : base(endpointConfigurationName, remoteAddress) {3}
public INBridgeImsAdapterClient(string endpointConfigurationName,
System.ServiceModel.Endpointiddres=s remoteAddress) :
base(endpointConfigurationName, remotefddress) {}
public INBridgeImsAdapterClient(System.ServiceModel.Channels.Binding binding,
System.ServiceModel.Endpointiddres=s remoteAddress) :
base(binding, remoteAddress) {}
public wvoid SendAnnotatedText(string name, jnbridge.jmsadapter.]MSMessageHeader messageHeader, string text) {
base.Channel.SendAnnotatedText(name, messageHeader, text);

public string SubscribeSharedDurableSelectText(string name, string selector, string durableSubscriptionName) {
return base.Channel.SubscribeSharedDurableSelectText{name, selector, durableSubscriptionName);

}

Figure 11. The generated C# client classes

20

Version 4.0

USERS’ GUIDE

app.config # >

<configuration:
<system.serviceModel>
<bindings>
<JNBridgeDotNetIMSAdapterBinding>
<binding BcelPath="C:\Program Files\INBridge\IMsAdapters\jnbin\bcel-5.1-jnbridge.jar™
InbCorePath="C:\Program Files\JNBridge\JMSAdapters\jnbin\jnbcore.jar™
name="JMSAdapterBinding” AcknowledgeMode="AUTO ACKNOWLEDGE"
SecurityAuthentication="none"
TopicConnectionFactory="jms/RemoteConnectionFactory”
QueueConnectionFactory="jms/RemoteConnectionFactory”
ClassPath="C:\Program Files\wildfly-8.2.1.Final\bin\client\jboss-client.jar;"
JvmPath="C:\Program Files\Java\jre7\bin\server\juvm.d11"™ JMsScheme="http-remoting”
InitialContextFactory="org.jboss.naming.remote.client.InitialContextFactory”
ImsVendor="J1Boss" MessageSelector="" DurableSubscription="sharedDurableSub_4"
QueueName="" TopicName="java:/jms/topic/sharedTopic” OffLine="true"
TransactionEnlistment="false" RunTime="true" BridgeType="Shared Memory"
HostName="" PortNumbe " UsessL="false" JVMArgs="" InboundPollPeriod="18"
CustomConnectionString="" ImsVersion="1M5 2.8" />
</INBridgeDotNetIMSAdapterBinding:
</bindings>
<client>
<endpoint address="jms://localhost:8888/" binding="INBridgeDotNetIMSAdapterBinding”
bindingConfiguration="IMSAdapterBinding” contract="JINBridgeImsAdapter”
name="IMSAdapterBinding_JNBridgeImsAdapter™ />
</client>
</system.serviceModel>
</configuration>

Figure 12. The app.config file

Program.cs* + X |3
onsoleApplicationd ~l| % ConsoleApplicationDemo. Program & Eanl\ﬁlaln[strmg[] args)

using System;

using System.Collections.Generic;
using System.Lling;

using System.Text;

using jnbridge.jmsadapter;

namespace ConsolefpplicationDemo

{
class Program
{
static void Main(string[] args)
{
string incomingDocument = null;
INBridgelmsAdapterClient client = new JNBridgelmsAdapterClient();
try
{
incomingDocument = client.SubscribeSharedDurableSelectText("java:/jms/topic/sharedTopic”
"IMSType="XML""
"durableSharedTop_5");
¥
catch (Exception ex)
{
if (ex.Message.Contains("A timeout has occured"))
{
Console.Writeline("Receive Timedout™);
client.Close();
return;
}
¥
string outgoingDocument = incomingDocument + "a modification to the document™;
IMSMessageHeader hdr = new IMSMessageHeader();
hdr.jmsCorrelationID = "aCorrelationID";
client.SendAnnotatedText("java: /jms/queue/processQ", hdr, outgoingDocument);
client.Close();
¥
}
L

Figure 13. The completed console application

Version 4.0

21

USERS’ GUIDE

Figure 13 completes this example by showing the application developed against the C# client API classes.

JMS Adapter Design-Time Configuration

In the previous section, Getting Started: A simple
console application, configuring the Add Adapter Service

Reference design-time tool to connect to a JMS server
was briefly discussed. This section explores in detail the
Configure Adapter dialog box and the security, connection
and binding properties in its three tabs.

Security Properties

Figure 14 shows the Security tab of the Configure Adapter
dialog box. The drop-down control Client credential
type contains four choices: None, Windows, Username

or Certificate. The credential type chosen is dependent Browse Remove
on the adapter binding. For the JNBridge JMS Adapter,
the credential type is that of the JMS server security

implementation—by default credential type Username.
Enter the login and pass word required to connect to the
JMS server.

Configure Adapter

Security Binding Properties
+ Connection
Host localhost
Port 8080
Host

Erter the JMS provider host name

Cancel

Figure 15. The URI Properties tab

Configure Adapter

Securty URI Properties ~ Binding Properties
Client credential type: Usemame w

User name credentials

User name: |imsuser |

Password:

Cancel

Figure 14. The Security tab

URI Properties

Figure 15 shows the URI Properties tab. This tab contains

one category, Connection, with two property fields. This URL
can be overridden with the Custom Connection String property
in the Bindings tab.

Host property

This is a text-editable property field. Enter the name or IP
address of the machine hosting the JMS server.

Port property

This is a text-editable field. Enter the port number where the
IJMS server is listening for connections. This port is usually
configured for Remote Method Invocation (RMI) and the
creation of contexts, factories, queues and topics.

22

Version 4.0

USERS’ GUIDE

Binding Properties

The Binding Properties tab, Figure 16, contains the configuration properties that determine how the
JNBridge JMS Adapter connects to the JMS server and the configuration of the core inter-operability
bridge between .NET and Java. The Binding Properties tab contains five categories of properties.

JMS Properties

The JMS property category are the J2EE properties required to connect to any JMS server. Figure 16
shows the JMS binding properties of a default configuration for a JBoss server. They are discussed in
detail, below.

Configure Adapter

B Choose JMS Vendor Sccurty | URI Properies Sndng Popetics
o 1 1 1 111 CloseTi 00:01:00
This property is a drop.—down edltat?le hs.t cont'alnmg the Cloce Tinoout A crfinding
names of several JMS implementations including Tibco Qo imart 00:01:00
eceive Timeout 00:10:00
EMS, Oracle EMS, JBoss, IBM WebSphere MQ and BEA -~ SenTiment 00-01:00
WebLogic. Figure 16 shows that the current selection is Tommockin Eensi [Foleo
JBoss. When a vendor is chosen, the remaining property v Inbound Service
B . . JMS Durable Subscription sharedDurableSub_4
fields in the category are automatically populated with S Moseege Selecor
the default configuration for that vendor. If the IMS GQueuo ez P
. . . . TN jova:fjmstopic/shared Topi
implementation varies from the default location, then the v s
.« Choose JMS Vendor JBoss
remaining properties in the category may be modified to Cient ID
. Custom C ction Stri
reflect the configuration of the JMS server. i Cotet Factory org bass.naming remote.ch
JMS Acknowledge Mode AUTO _ACKNOWLEDGE
If a JMS vendor does not appear in the list or it is necessary s
to maintain several configurations for a single vendor, the o e FomoteConnectionFac
user may add a new entry by typing in the field. For each v oo ' 5
new entry it is necessary to edit the remaining properties i f;;":wh C\Program Rles\wildly 8.
with the correct values for the configuration. e —— e Ry
JVM Path C-\Program Files\Java\jre7
1 1 1 1 1 Port Number
IMS BlI:ldlIlgS are sjcored in the file bind. prop'ertles' e — 5
located in the JNBridge JMS Adapter for .NET installation e
directory. Once a new entry has been configured or if s I
the default entries have been modified, all additions and
modifications will be saved. In addition, the last selected Cancsl

JMS vendor will be stored. : . :
Figure 16. The Binding Properties tab

! Thisisa binary file and cannot be edited by the user other than interacting with the
Binding Properties tab.

Version 4.0 23

USERS’ GUIDE

B ClientID

This is a string that is a unique identifier for the JMS connection. This should only be used for
JMS topics and durable subscriptions.

B Custom Connection String

This is a text-editable field. This property is only used if the JMS implementation uses
complex URLs containing query expressions, or some proprietary connection string. For
example, ActiveMQ, supports a simple URL connection string, tcp://medtner:61616, that
can be constructed from the Host and Port properties in the URI Properties tab.. However,
if connection and protocol properties must be set, ActiveMQ supports URLs with query
expressions:

failover:(tcp://scriabin:61616?wireFormat.maxInactivityDuration=30000,
tcp://elgar:61616?wireFormat.maxInactivityDuration=30000,
tcp://cage:61616?wireFormat.maxinactivityDuration=30000
Y?randomize=false

If this property contains a value, then the Host and Port properties will be ignored.

B Initial Context Factory

This is a text-editable field containing the name of the initial context factory. The initial
context factory is a Java class that provides instances of a JNDI intial context that is used

to lookup connection factories and JMS destinations. While the INBridge JMS Adapter
encapsulates the implementation details of a JMS client providing a simple abstraction of
the message service, it is still necessary to choose among the various initial context factories
configured for a particular JMS implementation. The default initial context factory for JBoss
is org.jnp.interfaces.NamingContextFactory.

! Factory names are case sensitive—be sure the name (including the complete

namespace, if necessary) is typed correctly.

B JMS Acknowledge Mode

The Acknowledge Mode is a drop-down list containing the JMS specification that determines
how a JMS client and server institute a reliable messaging protocol. The choices are AUTO_
ACKNOWLEDGE, CLIENT_ACKNOWLEDGE and DUPS_OK_ACKNOWLEDGE. Regardless
of the choice, the JNBridge JMS Adapter will correctly implement the protocol. For most
JMS implementations, AUTO_ACKNOWLEDGE is the default configuration.

®m JMS Scheme

This is a text-editable field. The JMS Scheme is particular to each vendor’s IMS
implementation and the types of connections supported. Each vendor may support several
schemes such as http, rmi or jnp (the default for JBoss).

24 Version 4.0

USERS’ GUIDE

B JMS Security Mode

The JMS Security Mode is a drop-down list that specifies the type of security required by the
JMS server implementation. The choices are none and simple. If the choice is simple, then the
server expects a user name and password.

! The JNBridge JMS Adapter for .NET supports security modes none and simple.

! If the JMS server implements simple security, it is not necessary to configure this
property. Use the Security tab in the Configure Adapter dialog to enter a user name
and password—the JNBridge JMS Adapter will automatically switch to the simple
security mode.

B JMS Version

This property tells the adapter which JMS implementation to expect when it loads the
vendor’s client stack—the JAR files in the Class Path property. The drop-down list contains
two choices, ‘JMS 1.1’ and ‘JMS 2.0°.

B Queue Factory

This is a text-editable field. The queue factory produces instances of classes used to connect
to queues hosted on the JMS server. Each JMS vendor may have several queue factories
implementing different aspects of the JMS 1.1 specification.

B Topic Factory

This is a text-editable field. The topic factory produces instances of classes used to connect
to topics hosted on the JMS server. Each JMS vendor may have several topic factories
implementing different aspects of the JMS 1.1 specification.

JNBridge properties

The JNBridge binding properties correctly configure the .NET-to-Java interoperability core components.

B JUNBridge Transport

This property determines the transport for the interoperability bridge between the .NET CLR
and the JVM. The default choice is Shared Memory. For most cases, the shared memory
bridge will provide the best performance as the CLR and JVM execute in the same process
space. However, in some cases it may be necessary to use the Binary TCP bridge where the
JVM executes in its own process.

The following three properties, Java class path, JVM Path and JVM Arguments, are used only by the
shared memory bridge.

Version 4.0 25

USERS’ GUIDE

B Java class path editor

The Java class path is a set of semicolon separated paths to the JAR or Class files required
for a JMS client installation. The class path is used by the INBridge Java and .NET
interoperability components to locate the JMS and JNDI client Java classes so they can be

instanced in the Java Virtual Machine.

To edit the class path, click in the field to enable the browse button [...]. Click on the button
to launch the Edit Class Path dialog, Figure 17. The class path can be rearranged by selecting
a class path element and clicking on the Move Up or Move Down buttons, or by selecting an
element and clicking on the Delete button. The files and folders in the system CLASSPATH

environment variable can be added to the

class path list by clicking on the Add system
CLASSPATH button. Note that only checked
elements will be added to the Java class path
when the dialog is dismissed. To add a folder

or jar file to the class path, click on the Add...
button. This causes a New Classpath Element
dialog, shown in Figure 18, to be displayed. In
this dialog, the user can navigate to the desired
folders or jar files, or can enter a file path directly.

The New Classpath Element dialog supports
multiple selection—multiple folders and/or jar
files may be selected by ctrl-clicking, while a
range of folders and/or jar files may be selected
by shift-clicking. Clicking on the OK button will
cause the indicated folders or files to be added to
the Edit Classpath dialog.

JVM Path

The JVM Path property is the absolute path to the
Java Virtual Machine implementation, jvm.d11.
To edit the JVM Path property, click in the field to
enable the browse button. [...]

Click on the button to launch the standard File Open
dialog. Navigate to Jvm.d11 and

click OK.

JVM Arguments

These are arguments that are provided to the JVM.
These arguments can be system properties using the
-D argument, e.g. -Dcom.sonicsw.jndi.mfcontext.
domain=TestDomain. Alternatively, the arguments
can be specific to the JVM like the heap size

Edit Class Path

C:\Program Files'wildfty-8.2.1.Final“bin‘client \jboss-cli-client jar

C:\Program Files'wildfly-8.2 1 Final'bin'client'jboss-client jar Move Up
C:\Program Files‘wildfty-8.2.1.Final‘iboss-modules jar
Add .

Add system CLASSPATH

Figure 17. The Java class path editor

New Classpath Element
Select a new folder orfile to add to the classpath:

-] Sysintemals

{23 Uninstall Information
-2 Waves

-3 wildfly-8.2.1 Final
[installation
{23 appclient
=-{3 bin
=&

jboss-cli-client jar
: | d| jposs-client jar
17 initd

{:l service

-{_] docs

#1771 damain
< >

| C:\Program Fileswildfly-8.2.1 Final“bin"client

oK Cancel

Figure 18. The New Classpath Element dialog

26

Version 4.0

USERS’ GUIDE

arguments -Xms and -Xmx. Each argument must be preceded by the dash -’ which is used as
a token to parse each JVM argument.

The following properties are used only if the JNBridgeTransport property is configured for Binary TCP.

B Host Name

This property gives the location of the Java process used by the interoperability bridge. This
property should not be confused with the Host property in the URI Properties tab, Figure 15
on page 21, which is the location of the JMS server.

B Port Number

This property is the port number that the Java side bridge component is listening to waiting
for a connection from the CLR side bridge component. This property should not be confused
with the Port property in the URI Properties tab, Figure 15 on page 21, which is the port at
which the JMS server is listening to for connections from clients. This value is usually 8085.

M Use SSL
If this property is True, then the Binary TCP bridge will use the Secure Sockets Layer.

Behavior properties

Behavior properties determine the connection mode for the Add Adapter Service Reference design-time
tool. Behavior properties are not stored in the bind.properties file.

B Work Off Line

This is a drop-down edit field with two choices: TRUE or FALSE. The default is FALSE;
when the Connect button in the Add Adapter Service Reference dialog is clicked, the
JNBridge JMS Adapter will try and connect to the JMS server.

If TRUE is selected, then the user can simply click on the Connect button to work off-line.
In off-line mode, the INBridge JMS Adapter will not connect to the JMS server. As such,
the JIMS Adapter will not construct specific (named) operations for any queues and topics
that may exist on the JMS server. The only available operations will be generic. For more
information on generic operations, see the section Qutbound Operations.

For more information about the advantages of working off-line, see the section Tips and
Tricks

If the developer is working off-line and generates the C# client API classes and the app .
config file, a property in the file, OffLine, will be set to TRUE. If the C# classes and app .
config file were created while working on-line (connected to the JMS server), then the

Version 4.0 27

USERS’ GUIDE

property, OffLine, will be set to FALSE.

If the Work Off Line property is set to FALSE and a connection exception occurs, the message
box in Figure 19 will be displayed. Choosing OK will set the Work Off Line property to
TRUE. Any subsequent generation of a C# client class will result in the app . config OffLine
property being set to TRUE.

Click 'OK' to work off-line or click 'Cancel' to reconfigure adapter and re-connect. X

Could not connect to the JMS server with the following error message:
The type initializer for 'com.jnbridge jnbcore.ObjectWrapper' threw an
exception.

Figure 19. Connection Error message

o

If the finished .NET application is executed and the binding element OffLine in

the app.config file has the value TRUE (see Fig. 12), the application will throw a
ConnectionException. The deployer must edit the app.config file and change the value
of the OffLine element to FALSE.

o

If the Work Off Line binding property is explicitly set to TRUE in the Binding Properties
tab or if a connection exception occurs and the developer chooses to work off-line by
clicking OK on the above message box, then there is the possibility that the remaining
binding properties may not be correct for a connection to the target JMS server as a
connection was never attempted. When the deployer toggles the OffLine property to
TRUE in the app.config file, she must check that the binding properties are correct
and, if not, edit the values.

B Transaction Enlistment

If this behavior property is set to true, then any JMS send or receive operations will automatically enlist
in the current thread’s transaction, if one exists. If the transaction is rolled-back, the JMS operation will
also be rolled-back. This type of transaction enlistment is called implicit. Explicit transaction operations,
like CommitReceiveQueueTransaction (), are not allowed when implicit transaction enlistment is
enabled. When transaction enlistment is enabled, use a System. TransactionScope to encapsulate JIMS send
and receive operations (along with other operations, like database updates).

Configuring Java when using the Binary TCP bridge

The JNBridge JMS Adapter uses an interoperability bridge between the NET CLR and the Java Virtual
Machine called the bridge transport. The JMS adapter uses the bridge to create and manage the Java JMS
client class API allowing the adapter to connect to any JMS Server. By default, the interoperability bridge
is set to Shared Memory. For most cases, the shared memory bridge will provide the best performance as
the CLR and JVM execute in the same process space. However, in some cases it may be necessary to use
the Binary TCP bridge where the JVM executes in its own process.

28 Version 4.0

USERS’ GUIDE

If the bridge transport is configured for Binary TCP, then it is necessary to start the Java side manually
using the following command line:

java.exe -cp classpath com.jnbridge.jnbcore.JNBMain /props jnbcore_tcp.properties

where classpath is the paths to the jar files for a particular JMS vendor’s implementation. The classpath
must also point to the files jnbcore.jar and bcel-5.1-jnbridge.jar which are found in the jnbin directory,
e.g. C:\Program Files\JNBridge\JMSAdapters\jnbin. The /props argument points to the file
jnbcore tcp.properties which contains information on how the Java side of the interoperability
bridge is to configure itself. The contents of jnbcore tcp.properties look like this:

Java-side (.NET-to-Java) properties
javaSide.serverType=tcp
javaSide.workers=5
javaSide.timeout=10000
javaSide.port=8085

The jnbcore_tep.properties file can be found in the JNBridge JMS adapter’s installation directory, e.g.
C:\Program Files\JNBridge\JMSAdapters\DotNet\bin\jnbcore tcp.properties.

Any JVM arguments can be added to this command line, as well.

o

Do not confuse the Binary TCP transport properties with the properties used to
connect to the JMS server. The transport properties only connect the .NET CLR with
the JVM forming the bridge which allows the adapter to be a JMS client and connect to
the JMS server.

Version 4.0 29

USERS’ GUIDE

Inbound Service properties

These properties, shown in Figure 16, are used only for inbound operations. Inbound operations are
only used when constructing a WCF listener service to receive messages asynchronously in a hosted
service process. The properties in this category are used to configure the listener service and reside in
the generated app . config file (see Figure 12). As such, these property values do not need to be set

to generate the C# inbound service client—they are not needed for a connection to the JMS server—
however they will need to be set in the generated app . config file. Inbound service properties are not
stored in the bind.properties file. For more information on inbound operations and services see the
section Inbound Operations and Services.

B Queue Name

This is a text-editable field containing the name of a queue hosted in a JMS server.

B Topic Name

This is a text-editable field containing the name of a topic hosted in a JMS server.

o

An inbound operation can only listen to either a queue or a topic. That means that if
a topic is the target, then the Queue Name property must be empty. If a queue is the
target, then the Topic Name property must be empty. If both a topic and queue name
are present, the inbound service will throw an exception when the .NET application is
executed. An exception will also be thrown if both properties are empty.

B JMS Durable Subscription

This is a text-editable field and contains the name of a durable topic subscription. If the
property is left empty, then any topic subscriptions will be nondurable, only.

B JMS Message Selector

This is a text-editable field and contains a message selector expression. If the property is left
empty, then no message selector is in place and all messages will be received.

B Poll Period

This is the polling period, in milliseconds, that the inbound service uses when checking
for messages on the JMS destination. If any messages are present, the inbound service will
consume all messages immediately temporarily ignoring the polling period. If there are no
subsequent messages available, the inbound service resumes polling.

During the polling period, the inbound service will relinquish CPU cycles to other threads,
most notably the GC finalizer. If memory use increases for the inbound service process over
time, consider increasing the polling period allowing the finalizer thread more cycles.

The minimum default poll period is 10 milliseconds. You cannot have a poll period less than
10 milliseconds

30

Version 4.0

USERS’ GUIDE

General properties

These properties deal with default time outs for opening, closing, sending and receiving operations.

Open Timeout

A period of time the JNBridge JMS Adapter will wait for the connection to the JMS server.
If the connection wait time is greater than the value, the adapter will either post an error
message box during design-time or throw an exception during run-time.

Close Timeout

A period of time the JNBridge JMS Adapter will wait for the graceful closing of the
connection to the JMS server. If the wait period expires, the adapter will either post an error
message box during design-time or throw an exception during run-time.

Send Timeout

A period of time the JNBridge JMS Adapter will wait for a send or publish operation to
complete. If the wait period expires, the adapter will throw an exception during run-time.

Receive Timeout

A period of time the JNBridge JMS Adapter will wait for a blocking receive or subscribe
operation to complete. If the wait period expires, the adapter will throw an exception during
run-time.

General and Specific Timeouts

The JNBridge JMS Adapter provides operations that receive/subscribe messages. Excluding some
asynchronous or inbound listener service operations, some blocking receive/subscriber operations provide
the option of setting a timeout period as an argument.

The rules for the interaction between system time-outs and blocking consume operations are as follows:

o

The Receive System Timeout is always enforced, even for those operations that do not accept a
timeout argument.

If the timeout argument is less than the system timeout, an exception is thrown when the timeout
argument is reached. If the timeout argument is greater than the system timeout, an exception is
thrown when the system timeout is reached.

If a timeout argument is set to zero, the operation will block indefinitely, overriding the
Receive System Timeout.

Version 4.0 31

USERS’ GUIDE

Outbound Operations

The JNBridge JMS Adapter for .NET has two broad categories of operations: Outbound Operations and
Inbound Operations.

B Outbound Operations send and receive messages to and from queues, or publish and subscribe
messages to and from topics. All send and publish operations, generically referred to as producer
operations, are outbound operations. Receive and subscribe operations, generically referred to as
consumer operations, are blocking operations. It is possible to use asynchronous versions of receive
and subscribe operations, leveraging the .NET Begin/End asynchronous pattern, to receive messages
asynchronously.

B Inbound Operations are all consumer operations that leverage WCF to create a listener service that
receives messages from queues and topics using an event driven pattern. Inbound operations are
discussed in the section Inbound Operations and Services.

Figure 10 on page 19 shows the Add Adapter Service Reference design-time dialog. The drop-down list
box titled Select contract type is set to the value Client (Outbound operations). The resulting categories
displayed in the Select a category pane, Figure 21 on page 33, fall into three top-level categories:
Configuration, Queues and Topics.

The Configuration category contains just one operation, InitAdapter, used to force the JNBridge JMS
Adapter to connect to a JMS server when executed. Usually the connection is delayed until the first
consumer or producer operation executes. The Queues category contains all queue consumer and
producer operations. The Topics category contains all topic consumer and producer operations.

Generic and Named Operations

Within the Queues and Topics categories, operations are categorized into Generic and Named operations.
A Named operation is specific to a queue or topic: the operation contains the name of the queue or topic.
Generic functions are not specific and can be used to produce and consume messages to and from any
queue or topic. Figure 20 shows portions of the design-time tool containing selected named and generic
queue operations to send and receive text messages. Figure 21 shows the generic and named categories in
the Select a category pane from the Add Adapter Service Reference dialog.

[Add] I Properties] [Add] [Properties]
Added categories and operations: Added categories and operations:

Name Name

=% SendText To_denver_account_g =% SendText

= SendAnnotated Text To_denver_accourt_q =@ SendAnnotated Text

=% Receive Text From_denver_accouri_g =@ Recaive Text

=% Receive Text Timeout From_denver_account_q =@ FecaiveSelect Taxt

14 (1 | + < 1 | +

Figure 20. Named and Generic operations

Version 4.0

USERS’ GUIDE

Text, Byte and Map Message Operations

Figure 21 displays categories for generic and named operations. The queue, denver_account_q, and the
Generic Topics category have been expanded to display the subcategories Text, Binary and Map. These
categories represent operations that produce and consume three types of JMS Messages.

B Text operations produce and consume—use as arguments and results—System.String on the .NET
side. This results in the JMS Adapter sending and receiving a javax.jms.TextMessage containing type

java.lang.String. The JNBridge Java and .NET interoperability technology maps System.String to
java.lang.String on the Java side.

B Binary operations produce and consume—use as arguments and results—arrays of System.Byte
on the .NET side. This results in the JMS Adapter sending and receiving a javax.jms.ByteMessage
containg an array of byte.

B Map operations produce and consume maps: associations R
of a name, a datatype and the datatype value. On the NET = f__ Corfiauration
side operations produce and consume—use as arguments and & Qu Eui -
results—the class jnbridge.jmsadapter.JMSMessageMap. e Generic Queves|
This results in the JMS Adapter sending and receiving javax. - chicago_cm_g
jms.MapMessage on the Java side. The JMS Adapter and the =- denver_account_g
.NET-to-Java interoperability technology map between the IMS - Texdt
message and JMSMessageMap. ¥ Binary
- Map
Binary Operations: signed vs. unsigned bytes = T.'E'nsadi':'ns
[+ miami_crm_q
. . . = Topics
The Java datatype byte is a signed byte: its values are from -128 to & Generic Topics
127. Instead of mapping the signed byte to the .NET type System. - Corfiguration
Sbyte, the INBridge JMS Adapter instead maps the signed byte to - Text
System.Byte. This is an unsigned byte: its values are from 0 to 255. - Binary
If it’s necessary, on the .NET side, to convert between signed and " Map
unsigned bytes, use the C# code shown in Figure 22, to convert Transactions
between the two types. As there is no risk of overflow or truncation, [+)-chicago_report_tpc

the use of an unchecked block is not necessary. Figure 21. Operation categories

JNBridgeJmsAdapterClient client = new JNBridgeJmsAdapterClient();
byte[] unsignedBytes = new byte[10];
sbyte[] signedBytes = new sbyte[10];

unsignedBytes = (byte[])((Array)signedBytes);
client.SendBytesTo_denver_account_g(unsignedBytes);
unsignedBytes = client.ReceiveBytesFrom_denver_account_q();
signedBytes = (sbyte[])((Array)unsignedBytes);

Figure 22. sbyte, byte conversions

Version 4.0 33

USERS’ GUIDE

Map Operations

A Map is a set of named properties where each property associates a data type and value, such as an

int and the number 42, with a given name, such as “The Answer”. Within a NET application using the
JNBridge JMS Adapter, a map is implemented by the classes JMSMessageMap, JMSProperty and an
enumeration, JMSProperty Type, all in the namespace jnbridge.jmsadapter. The source definition of
these classes and enumeration is generated in the C# client file along with the classes implementing the
operations only if at least one of the operations produces or consumes a map. Figure 23 displays C#
source code (note the use of generic operations) using the above classes and enumeration to produce and

consume maps.

{
{
{

}
}
}

using System,;

using System.Collections.Generic;
using System.Text;

using jnbridge.jmsadapter;
namespace ConsoleApplication3

class Program

static void Main(string[] args)

JNBridgeJmsAdapterClient client = new JNBridgeJmsAdapterClient();
JMSMessageMap aMap = new JMSMessageMap();

JMSProperty[] props = new JMSProperty[1]; //an array with one element
props[0] = new JMSProperty();

props[0].propertyName = “The Question”;

props[0].stringValue = “WHAT DO YOU GET IF YOU MULTIPLY SIX BY NINE?”;
props[0].propertyType = JMSProperty Type.String;

aMap.properties = props;

client..PublishMap(“‘question_tpc”, aMap);
aMap = client.SubscribeMap(“answer_tpc”);
props = aMap.properties;

if (props[0].property Type == JMSPropertyType.Int
&& props[0].propertyName == “The Answer”)
{
I result: The answer is: 42
Console.WriteLine(String.Format(“The answer is: {0}", props[0].intValue));

}

Figure 23. Using Maps

34

Version 4.0

USERS’ GUIDE

The class JMSProperty is equivalent to the properties contained in the Java class javax.jms.MapMessage.
On the Java side, MapMessages support the datatypes bool, byte, byte[], char, short, int, long, float, double
and string. On the .NET side, the class JMSProperty supports the datatypes bool, byte[], char, int, long,
float, double and string. Because of XML data representation in WCEF, the datatypes byte and short are
represented by the datatype, int.

On the Java side, a byte is signed, while on the .NET side, a byte is unsigned. For more complete
discussion on signed and unsigned bytes, please see the previous section. On the .NET side, a string
(System.String) is mapped to the Java class java.lang.String.

Setting JMS Message Headers

Like most messaging services, JMS allows access to a set of named properties known as a message
header. The previous section discussed the string, byte array and map payload or body of a JMS message.
This section discusses setting headers in producer operations. Consumer operations do not “read”
message headers per se, rather they use filters, sometimes called selectors, that select messages based on
header property values. Message selectors are discussed in the next section.

A JMS message header consists of a set of named properties. In addition, the sender of a message
may add any number of arbitrary properties to the header. These properties are exactly the same as the
properties that constitute a Map, discussed in the previous section.

Producer operations that allow the developer to set headers contain the word ‘Annotated’ in their
signatures and take as an argument an instance of the class jnbridge.jmsadapter.

JMSMessageHeader. Figure 24 shows the Added categories and operations pane from the Add Adapter
Service Reference design-time tool containing producer operations that set message headers.

Figure 25 shows the named or reserved properties in a JMS Message header as implemented by the

class JMSMessageMap. A majority of these header properties are set by the JMS Server, not the client
producer. However, for completeness (and to mirror the capabilities of the Java Message class) setting of
all reserved properties is allowed.

’ Add] ’ Properties

Added categories and operations:

Name

=@ SendAnnotatedMap
=@ PublishAnnotatedBytes To_chicago_report_tpc
=@ SendAnnotated Text

=@ SendAnnotated Text To_chicago_cm_q
4| T | 2

Figure 24. Annotated operations

Version 4.0 35

USERS’ GUIDE

JMSMessageHeader header = new JMSMessageHeader();
header.jmsCorrelationID = “myID”; Il client set
header.jmsCorrelationIDAsBytes = Encoding.UTF8.GetBytes(*mylD”); // client set
header.jmsDeliveryMode = (int)42; I set by server

header.jmsExpiration = (long)4200; I set by server
header.jmsMessagelD = “c22b8f0e-c3b3-1004-87a4-0ec38231890c”; // set by server
header.jmsPriority = (int)42; I set by server

header.jmsRedelivered = true; I set by server

header.jmsTimestamp = (long)123456789; //set by server

header.jmsType = “TextMessage”; I set by server

header.deliverDelay = DateTime.Now.Add(TimeSpan.FromMinutes(10));

Figure 25. Reserved JMS header properties

Figure 26 shows C# source implementing creating and sending message headers. Only producer
operations can set and send/publish message headers. The receive/subscribe consumer operations use
selectors to select messages based on message header properties.

Program.cs +® X [EJsJsReslgiile] J dapterBindingClient.cs
[&#] ConsoleApplicationd ~ | "%, ConsoleApplicationDemo.Program - @ Main(string[] args)

static void Main(string[] args)

{

string incomingDocument = null;

INBridgeImsAdapterClient client = new JINBridgelImsAdapterClient();
try
{
incomingDocument = client.SubscribeSharedDurableSelectText("java:/jms/topic/sharedTopic”
, "IMSType="XML'"
» "durablesharedTop_5");
}
catch (Exception ex)
{
if (ex.Message.Contains("A timeout has occured"))
{
Console.Writeline("Receive Timedout™);
client.Close();
return;
}
}

string outgoingDocument = incomingDocument + "a modification to the document™;

JMsMessageHeader header = new JMSMessageHeader();

header.jmsCorrelationID = "myID"; // client set
header.jmsCorrelationIDAsBytes = Encoding.UTF8.GetBytes("myID"); // client set
header.jmsDeliveryMode = (int)42; // set by server
header.jmsExpiration = (long)42@a; // set by server
header.jmsMessageID = "c22b8f@e-c3b3-1804-87a4-Bec382318%ac”; // set by server
header.jmsPriority = (int)42; // set by server
header.jmsRedelivered = true; // set by server
header.jmsTimestamp = (long)l23456789; //set by server

header.jmsType = "TextMessage™; /{ set by server

/f New IM5 2.@ feature to delay the consumption of a published/sent message

I This example ensures that any messages will not be available for

I consumption until 6:@88 PM every day

header.deliveryDelay = DateTime.Parse(DateTime.Now.Date.ToString("d") + "6:8@ PM");

client.SendAnnotatedText("java:/jms/queue/processQ”, header, outgoingDocument);
client.Close();

Figure 26. Using message headers, selectors and delivery delay

36 Version 4.0

USERS’ GUIDE

Setting delivery delay in a JMS Message Header

New JMS 2.0 feature to delay the consumption of a published/sent message This example in Figure 26
ensures that any messages will not be available for consumption until 6:00 PM every day.

Using Message Selectors

Message selectors are used by consumer operations to filter or select messages from topics and queues
based on JMS and custom message header properties. All consumer operations that use selectors have the
word "Select” in their signatures and take a string as an argument containing an expression that evaluates
header properties. The expression is derived from a subset of the SQL92 standard.

Added categories and operations:

MName

=@ Fleceive Select Bytes
= Subscrbelurable SelectMapFrom_chicage_report_tpe
=8 SubscrbeSelect Text Tmeout

1 |] [3

Figure 27. Consumer operations that use selectors

Figure 27 shows the Added categories and operations pane from the Add Adapter Service Reference
design tool. The pane shows a variety of consumer operations that use selectors. Figure 26 shows an
example of using message selectors.

Using Durable Subscriptions

Durable subscriptions are particular to topic subscribers only. A durable subscription for a topic allows
consumers to register a name with the JMS server such that whenever a subscribe operation uses that
name, all messages in the topic will be received. In this way, a subscriber does not have to be continually
connected to receive messages from a topic. Topic consumer operations that do not use durable
subscriptions must be connected in order to

. . . Added categories and operations:
subscribe to a topic—any messages published N
. . . R ame:
by the topic while a nondurable subscriber is not - SubserbeDurableMap
connected will not be available to that consumer =& SubscribeDurable Text Timeout

. @ SubsoribeDurable SelectBytesFrom_chi 1
when it reconnects to the server. ubecribe DurableSelectBytesFrom_chicago_report tpc

€ | i | 3

Figure 28 shows the Added categories and
operations pane from the Add Adapter Service
Reference design tool. The pane shows a variety
of topic subscriber operations that use durable subscriptions. All subscribe operations that use durable

Figure 28. Subscribe operations using durable
subscriptions

Version 4.0 37

USERS’ GUIDE

subscriptions have the word “Durable” in their signatures and accept an argument of type string containing
the durable subscription name.

Select a category: Ayailable categories and operations:

Unsubscribing from a durable |

Name

H H i~ Corffigurati
sSu bSCI'I ptl on [-onigdration =@ UnsubscribeFrom_chicago_report_tpc

[Queuss

4 m 3

Once a durable subscription has
been created, at some point it may
be necessary to unsubscribe from

Added categories and operations:

i - Transactions
the durable subscription, in effect cocmmune |
removing the durable name from __ = “@Unsubscribe
the JMS server. Under the generic i i . : :
topics category as well as under Tersactons
each named topic category is a
subcategory called Configuration Figure 29. Unsubscribe operations

containing an unsubscribe operation.
Figure 29 shows the category tree and
selected unsubscribe operations.

string durableSubscriptionName = “October”;
string response = client.SubscribeDurableText(“chicago_report_tpc”,
durableSubscriptionName);

client.Unsubscribe(“chicago_report_tpc”, durableSubscriptionName);

Figure 30. Using durable subscriptions in code

Figure 30 shows a block of C# code that uses durable subscriptions in generic topic operations.
Using Durable Shared Subscriptions

The JMS 2.0 specification provides for sharing durable subscriptions among several consumers. In JMS
1.1 this is illegal, however, it prevented concurrent consumption of messages. Figure 28a shows several
durable shared operations.

Added categories and operations:

Name

=4 Subscribe Shared Durable Test
= Subscribe Shared DurableSelect Ted Tmeout
=@ Subscribe SharedDurableBytes

£ >

Figure 28a Shared Durable Topic operations

38 Version 4.0

USERS’ GUIDE

Blocking and Asynchronous Operations

All of the examples of consumer operations given so far have been blocking operations. All blocking
consumer operations will eventually timeout and throw an exception. Timeout periods can either be set
globally for all operations or set specifically in the operation using a timeout argument. Global or system
time-outs are set in the Bind Properties tab of the Configure Adapter dialog. Operations that accept a
timeout argument always contain the word “Timeout”. The timeout argument is of type long and represents
a period in milliseconds.

General and Specific Time-outs

The rules for the interaction between system time-outs and blocking consumer operations that except a
timeout argument are as follows:

B The system receive timeout is always enforced, even for those operations that do not accept a timeout
argument.

B [f the timeout argument is less than the system timeout, an exception is thrown when the timeout
argument is reached. If the timeout argument is greater than the system timeout, an exception is
thrown when the system timeout is reached.

o

If a timeout argument is set to zero, the operation will block indefinitely, overriding the
System Timeout.

Figure 31 shows a block of C# code that catches timeout exceptions.

string aSelector =
“JMSCorrelationID = ‘mylD’ AND DivisionNumber = 2701 AND DivisionName = ‘Ghost Division;
string response = *;
try
{
112 second timeout
response = client.ReceiveSelectTextTimeoutFrom_chicago_crm_q(2000, aSelector);

}

catch (Exception e)

{

if (e is ConnectionException)

{

if (e.Message.IndexOf(“A timeout has occured”) > -1)

Console.WriteLine(“Subscribe to select text has timed-out”);

Figure 31. Catching a timeout exception

Version 4.0 39

USERS’ GUIDE

Asynchronous Operations

Advanced Options

All of the blocking outbound consumer operations can be used in B tnhes B SR ey
an asynchronous fashion by leveraging the .NET asynchronous [Generte gsnctrenous metheds
. . B [] Generste message contracts

pattern using IAsyncResult. In order to use the operations in [Make types temal
an asynchronous fashion, it is necessary to generate the NET [Enable data binding
asynchronous operation signatures Begin[Operation Name] and [] Mark classes serisizabls
End[Operation Name] by using the Advanced Options dialog box, Llcaeaadasaiiate
Fl ure 32 [] Import non-data types as [¥mlSerializable

g ’ [] Da not generate configuration file
The Advanced Options dialog is accessed by clicking the button S;“aier
Advanced options in the Add Adapter Service Reference design- P
time tool, Figure 10, page 17. The button is located in the lower left O sniserilizer
corner of the design-time tool and is only enabled when operations
have been selected and are in the Added categories and operations ok][coea
pane.

Figure 32. The Advanced Options
When developing an asynchronous application using the .NET dialog
asynchronous versions of the blocking consumer operations,
remember that timeout values will still be in effect. Even though
the operation will not block (as it is essentially in another thread) it
will still timeout once either the system receive timeout or a specific timeout argument has expired. This
will cause an exception. You should modify system time-outs or timeout arguments according to the
requirements of the asynchronous application. If you do not want timeout exceptions thrown, then you
can use those consumer operations that accept a timeout argument and set the timeout to 0 milliseconds.

To generate asynchronous operations in addition to the normal non-asynchronous operations, simply
access the Advanced Options dialog box and check the box titled Generate asynchronous methods, click

[System.CodeDom.Compiler.GeneratedCodeAttribute(“System.ServiceModel”, “4.0.0.0")]
[System.ServiceModel.ServiceContractAttribute(Namespace="jms://JNBridge.JMSAdapter”
, ConfigurationName="JNBridgeJmsAdapter”)]
public interface JNBridgeJmsAdapter
{
[System.ServiceModel.OperationContractAttribute(AsyncPattern=true
, Action="/Queues/chicago_crm_g/Text/receive_text_specific_g_to”
, ReplyAction="/Queues/chicago_crm_g/Text/receive_text_specific_q_to/response”)]
System.|AsyncResult BeginReceiveTextTimeoutFrom_chicago_crm_g(long timeout
, System.AsyncCallback callback
, Object asyncState);

string EndReceiveTextTimeoutFrom_chicago_crm_q(System.|AsyncResult result);

}

Figure 33. Generated asynchronous operations

40 Version 4.0

USERS’ GUIDE

using System;

using System.Collections.Generic;

using System.Text;

using System.Threading;

using Microsoft.ServiceModel.Channels;

using Microsoft.ServiceModel.Channels.Common;

namespace ConsoleApplication3
class Program

public static JNBridgeJmsAdapterClient client = new JNBridgeJmsAdapterClient();
public static string response;

private static void asyncDemoCallBack(IAsyncResult ar)

{
try

response = client.EndReceiveTextTimeoutFrom_chicago_crm_g(ar);
catch (Exception e)

if (e is ConnectionException)

{

if (e.Message.IndexOf(“A timeout has occured”) > -1)
Console.WriteLine(“A timeout has occured. Set the timeout to 0 to never let this happen”);
}
}
i
finally

Console.WriteLine(“Message received: “ + response);

}
}

static void Main(string[] args)

AsyncCallback callback = new AsyncCallback(asyncDemoCallBack);

I/ using a timeout of 100 seconds, use zero (0) to never time out

IAsyncResult ar = client.BeginReceiveTextTimeoutFrom_chicago_crm_g(100000, callback, null);
/I mimic doing something else by just spinning on IAsyncResult isCompleted flag

while (lar.IsCompleted)

Thread.Sleep(100);

I sleep a little more as the flag toggles to TRUE when the call back method is entered—not when it completes
Thread.Sleep(100);

Figure 34. Using asynchronous applications

Version 4.0 41

USERS’ GUIDE

OK, and then click on the OK button in the design-time tool. Figure 33 shows the asynchronous interface
of the generated C# client class.

The following C# implementation in Figure 34 on the following page shows using the asynchronous form
of a simple receive text from a queue operation. Note that the timeout version of the receive operation is
used.

Inbound Operations and Services

The last section closed with a discussion of asynchronous operations using essentially a multi-threaded
model based on the .NET asynchronous Begin/End pattern. This section discusses a more useful and
more sophisticated method of continually consuming messages using an event driven listener pattern.
The JNBridge JMS Adapter for .NET leverages the Windows Communication Foundation (WCF) service
capabilities to support inbound operations.

Inbound Operations

Added categories and operations:

— In the | ion, Qutbound Operati

8 OnReceiveText FromQuews n the last section, Qutboun peratzf)ns,

=4 OnSubscrbeMapFromTopic reference was made to a drop-down list control
= OnReceiveSelect Text From_chicago_cm_q . :

O OnS bectbeDursbBytesFrom Chicaus. rport o tltleq Select contract' type in the Add Adapter

= OnSubscrbeDurable SelectAnnotated Map From_chicago_report_tpc Service Reference dlalog. For outbound

Ml I | G operations, the selected value was Client

(Outbound operations). For inbound operations,
change the contract type to Service (Inbound
operations). Each of the different operation
categories discussed in the section Qutbound Operations will contain only inbound operations—there
will be no producer operations. Figure 35 shows the Added categories and operations pane from the Add
Adapter Service Reference dialog with examples of inbound operations. All inbound operations start with
‘On’ and, like the naming conventions for outbound operations, contain words denoting message type, like
‘Map’, or words denoting subscriber options, like ‘Durable’ or ‘Select’.

Figure 35. Examples of Inbound operations

[System.CodeDom.Compiler.GeneratedCodeAttribute(“System.ServiceModel”, “4.0.0.0")]
[System.ServiceModel.ServiceContractAttribute(Namespace="jms://JNBridge.JMSAdapter”
, ConfigurationName="JNBridgeJmsAdapter”)]
public interface JNBridgeJmsAdapter {
[System.ServiceModel.OperationContractAttribute(Action="/Queues/Generic Queues/Text/receive_text_any_q_async”
, ReplyAction="/Queues/Generic Queues/Text/receive_text_any_g_async/response”)]
void OnReceiveTextFromQueue(string name, string text);

[System.ServiceModel.OperationContractAttribute(

Action="/Queues/chicago_crm_q/Binary/Message Selectors receive_select_bytes_specific_q_async”

, ReplyAction="/Queues/chicago_crm_g/Binary/Message Selectors/receive_select_bytes_specific_q_async/response”)]
void OnReceiveSelectBytesFrom_chicago_crm_g(string selector, byte[] bytes);

}

Figure 36. The generated WCF interface for two inbound operations

42 Version 4.0

USERS’ GUIDE

namespace JMSAdapterBindingNamespace

{
public class JMSAdapterBindingService : JNBridgeJmsAdapter {

public virtual void OnReceiveTextFromQueue(string name, string text) {
throw new System.NotimplementedException(
“The method or operation is not implemented.”);

}

public virtual void OnReceiveSelectBytesFrom_chicago_crm_q(string selector
, byte] bytes) {
throw new System.NotimplementedException(
“The method or operation is not implemented.”);

Figure 37. Interface implementations

When a C# client API class is generated, two source files will be created. One source file will contain the
interface class, the other source file contains the stubbed implementations of the interface. The generated
source in Figure 36 is the file IMSAdapterBindingInterface.cs containing the inbound operations
interface. The implementation of the interface in Figure 38 is in the file JMSAdapterBindingService.
cs shown in Figure 37. Note that several inbound operations can exist in one service.

Unlike outbound operations, these methods are not called by the developer, they’re called by the
JNBridge JMS Adapter when messages arrive on the topics and queues being listened to. Figure 38 shows
a completed implementation of the two service methods.

The two methods will be called by the JMS Adapter when incoming messages arrive on the respective

namespace JMSAdapterBindingNamespace
public class JMSAdapterBindingService : JNBridgeJmsAdapter {
public virtual void OnReceiveTextFromQueue(string name, string text)

Console.WriteLine(“This message, “ + text + “, has been received from queue, “ + name);

}

public virtual void OnReceiveSelectBytesFrom_chicago_crm_q(string selector, byte[] bytes)

string format =
“Using selector, {0}, a message containing {1} bytes received from queue chicago_crm_q";
Console.WriteLine(String.Format(format, selector, bytes.Length));

}

Figure 38. Example implementations

Version 4.0 43

USERS’ GUIDE

queues. For the method OnReceiveSelectBytesFrom_chicago_crm_q the incoming messages are filtered
by a selector. When the JMS Adapter calls these methods, it will pass arguments containing the payload of
the received messages, in this case a string, text, for the method OnReceiveTextFromQueue, and an array
of byte, bytes, for the method OnReceiveSelectBytesFrom_chicago_crm_q. The remaining arguments are
the parameters that configured the listening service.

For the generic method OnReceiveTextFromQueue, the string name will contain the name of the queue
being listened to. For the method OnReceiveSelectBytesFrom_chicago_crm_q the string selector will
contain the selector used to filter messages.

Unlike outbound operations, there is no mechanism to supply outbound configuration arguments to the
JMS Adapter. In this example, two arguments must be supplied. For OnReceiveTextFromQueue, a generic
operation, the name of the queue must be supplied. For OnReceiveSelectBytesFrom_chicago_crm_q, the
message selector expression must be supplied. Parameters that configure inbound operations are placed in
the generated app . config file.

Configuring Inbound operations

Configuration parameters for inbound operations are supplied in the app . config file. The app . config
file can be edited manually after all code is generated during design-time. Alternatively, the parameters
can be entered in the Binding Properties tab of the Configure Adapter dialog, Figure 39.

In this example, the binding property, TopicName, will
have the value java:/jms/topic/sharedTopic. This topic
name will be used by the generic inbound operation,
OnSubscribeDurableTextFromTopic. The binding property, JMS Securty URIPropeties Binding Properes

Configure Adapter

Message Selector, will have the value, ColorProperty = ‘blue’. + (General) 2

This message selector will be used by the inbound operation _ re——

OnSubscribeDurableTextFromTopic. For a description of the e oriom

Inbound Service binding properties, please see the section v Bebamer oo

Inbound Service Properties. The resulting app . config file e Tl

is shown in Figure 40. During deployment, the four values " ey

that make up the inbound service properties can be modified e e

according to the deployment environment. e 1ava-/imatopic/shared Top
v JMS v

The final task necessary to complete the example is creating P
the inbound service using the WCF class ServiceHost. Once
the inbound service is executed, it will run continuously
until stopped. If messages arrive on the topic java:/jms/topic/
sharedTopic (and the messages in the topic have a property Figure 39. Inbound Service properties
called ‘ColorProperty’ with a value of ‘blue”’), then the respective

methods are called in the interface. This is essentially an event

driven asynchronous pattern. Figure 41b shows the WCF service.

Cancel

44 Version 4.0

USERS’ GUIDE

app.config # X |
<xml version=
<configuration>
<system.serviceModel>
<behaviors>
<endpointBehaviors»
<behavior name="InboundActionEndpointBehavior">
<inbgundActionElement />
</behavior>
<«/endpointBehaviors>
</behaviors>
<extensions>
<behaviorExtensions>
<add name="inboundActionElement™

IMSAdapterConnection.cs &

encoding="utf-8"2>

</behavierExtensions>
</extensions>
<services>

contract="INBridgeImsAdapter” />
<fservice>
</services»
<bindings»
<INBridgeDotNetIMSAdapterBinding>

DurableSubscription="myDurableSub” QueueName=""

HostName="" PortNumber=""
CustomConnectionString=""
</INBridgeDotNetIMSAdapterBinding>
</bindings>
</system.serviceModel>
«/configuration>»

ImsVersion="1M5 Z2.8" />

«service name="JMSAdapterBindingNamespace.JMSAdapterBindingService"»
<endpoint address="jms://localhost:88808/" behaviorConfiguration="InboundActionEndpointBehavior™
binding="JNBridgeDotNetIMSAdapterBinding” bindingConfiguration="IMSAdapterBinding"

InboundPollPeriod="1@

type="Microsoft.ServiceModel .Channels.InboundActionElement, Microsoft.ServiceModel.Channels,
Version=3.8.8.8, Culture=neutral, PublicKeyToken=31bf3856ad364e35" />

<binding BcelPath="C:\Program Files\JNBridge\JMSAdapters\jnbinibcel-5.1-jnbridge.jar"
InbCorePath="C:\Program Files\JNBridge\IMSAdapters\inbin\jnbcore.jar"
name="IMSAdapterBinding" AcknowledgeMode="AUTO_ACKNOWLEDGE"
SecurityAuthentication="none" TopicConnectionFactory="jms/RemoteConnectionFactory"
QueueConnectionFactory="jms/RemoteConnectionFactory™"
ClassPath="C:\Program Files\wildfly-8.2.1.Final\bin\client\jboss-client.jar;"
JvmPath="C:\Program Files\Java\jre7\bin\serveryjvm.dll" IMSScheme="http-remoting™
InitialContextFactory="org.jboss.naming.remote.client.InitialContextFactory™
ClientID="cid" ImsVendor="JBoss" MessageSelector="ColorProperty="'blue"'"
Topichame="Java: /jms/topic/sharedTopic”
OffLine="false" TransactionEnlistment="false" RunTime="true" BridgeType="Shared Memory"
UseSSL="false" IVMArgs=""

Figure 40. The app.config file for a inbound service.

Using an Exception Listener Inbound Service

The underlying JMS mechanism for all Inbound Services
is a JMS MessageListener. Because a MessageListener

is essentially a callback handler for receiving messages,
there is no way to catch exceptions. The JMS specification
provides an ExceptionListener mechanism for handling
exceptions thrown by the JMS server. The server will
notify all of its currently connected clients if it should
detect any connection issues. The most common
connection issue is when the server itself severs a
connection prior to being shutdown.

Figure 41a shows configuring the Exception Listener,
OnTopicConnectionException, in the Add Adapter Service
Reference dialog. Figure 41b shows the binding service
implementation and main program.

Select a binding: Corfigure a URI
INEridgeDothiet ims
Example:
Digconnect | Connection status: Connected

Select contract type:

Search in category: \Topics\Generic Topics\Configuration

Senvice (Inbound operations) v | @
Select a category: Avalable categories and operations:
e/ Name Node ID
Configuration 3
Queves =% OnTopicConnecti ¥l
& Topics
- Generic Topics
Corfiguration
Teat
By Add Propetties
- Map
Transactions Added categories and operations:
Name Node ID
~®OnTopicC /C .
< >
Be Remove Al
Fiename prefic
Advanced ptions [oms] 0K Cancel

Figure 41a. Configuring an inbound

exception listener

Version 4.0

45

USERS’ GUIDE

[ConsoleApplicationi1 ~|| *3 IMSAdapterBindingNamespace. JMSAdapter ~l|® OnTopicConnect
|,"|," ..
// «auto-generated>
i This code was generated by a tool.
i Runtime Version:4.8.38319.42888
¥
/i
I Changes to this file may cause incorrect behavior and will be lost if
i the code is regenerated.

{{ <fauto-generated>

using Censoleapplicationil;
using System;
using system.Servicemodel;

namespace JMSAdapterBindingNamespace {
public class IMsadapterBindingsService : INBridgelImsadapter {
public virtual void onTopicCennecticoneException(string exception)

/{ the server is being shutdown
Console.WriteLine("server shutdown asynchronous exception received: " + exception);
Frogram. host.abort(};

app.config Program.cs & X

[ConsoleApplicationi1 'Itﬁ ConsoleApplication11.Program 'Iﬁ’a Main(string[] arg
using System;
using system.Collections.eeneric;
using System.Ling;
using System.ServiceModel;
using System.Text;
using IMsadapterBindingNamespace;
namespace ConsoleApplicationil

{
class Program {
public static ServiceHost host = null;
static void main(string[] args) {
try {
/{ create a Servicedost and use the base address from app.config
host = new ServiceHost(typeof (IMsadapterBindingservice));
[/ Open the Servicedost to start listening for messages
hest.open();
Console.MriteLine("The service is ready.");
console.WriteLine("Press <ENTER> to terminate service.");
Console.ReadLine();
// Close the servicedost
hest.Close(};
¥
catch (Exception ex) {
Console.writeLine(ex.Message);
i
}
¥
3

Figure 41b. An inbound service

46 Version 4.0

USERS’ GUIDE

Transactions

The JNBridge JMS Adapter for .NET supports local IMS transaction. Local transactions are controlled
by executing a commit or rollback within the JMS client. A stand-alone JMS client cannot participate in
distributed or global transactions using the Microsoft Distributed Transaction Coordinator.

Added categories and operations:

Name

=4 EnableSendQueus Transactions

=4 EnableReceiveQueus Transactions
=4 Commit SendQuevs Transaction

=4 Commit ReceiveQueus Transaction
=4 Rollback SendQueus Transaction
=4 RollbackReceiveQueus Transaction

4 | i b

Figure 42. Generic transactions

Transaction Operations

Added categories and operations:

Name

=@ Enable SendQueus TransactionsFor_denver_account_g

=@ EnableReceiveQueus TransactionsFor_denver_account_g

=@ Commit SendGueus TransactionFor_denver_sccount_g

=@ Commit RecsiveGueus TransactionFor_denver_account_g

=@ Rollback SendGueue Transaction For_denver_account_g

=@ Rollback ReceiveQueus TransactionFor_denver_account_g

< [l | +

Figure 43. Named transactions

Figures 42 and 43 show both generic and named transaction operations for queues. Transaction operations
fall into three categories: enable transactions, commit transactions and rollback transactions. The three
categories are further subdivided into send/publish (produce) and receive/subscribe (consume) transaction

operations.
Enable Transactions Operations

Transaction operations that enable transactions must
be called once prior to any produce or consume
operations. It is best to enable transactions after the

creation of the client class, JNBridgeJmsAdapterClient.

Once transactions have been enabled, they cannot be
disabled.

Commit Transaction Operations

Commit transactions are called after a message

has been produced or consumed. If a message is
produced but never committed, it will not be visible to
consumers and will have a pending state in the IMS
server. Likewise, if a message is consumed and never
committed, it will still remain in the queue or topic.

4 E nableS=ndilu=u=Transachonz

= E rableSubscibel opc T rarsachons
@ E natleRecerelueusTrzncactioreFar_lestduels
@ E natlePublishT aoicTranzactionsFol_tesiTopic

Figure 44. Example enable transactions.

-4 CammicA eceivel weweTrarsaction

~#p CammicSendducueT iansactionFor_tasiDuaua
M CammirPublzhTapicT ansaction

E CammiSubzonbaTapic TranzactionF or_bestT opic

Figure 45. Example commit transactions.

Version 4.0

47

USERS’ GUIDE

Rollback Transaction Operations

If a transaction fails, a rollback operation can be 8 Aalha kR s ve sy Transachio

called. Ifa produced message is rolled back, it is =¥ RalbackSendd ueueTranackionFor_tesidueue
removed from the topic or queue. If a consumed =8 AalbackSubzorbeTopcT ianzeachian
message is rolled back, it is placed back on the topic or | & RalbackFublshT cpicTiarzaclionFor_testTopc
queue.

Figure 46. Example rollback transactions.

The simple program in Figure 47 enables produce and consume transactions using named operations
for the topic, festTopic, and the queue, testQueue. Commit and rollback operations are predicated on an
exception being thrown by the processing code represented by the call to processTransaction.

JNBridgeJmsAdapterClient client = new JNBridgeJmsAdapterClient();
/I enable produce and consume transactions for testTopic
client.EnablePublishTopicTransactionsFor_testTopic();
client.EnableSubscribeTopicTransactionsFor_testTopic();

/I need to signal in final block whether to commit or rollback

bool needToCommit = false;

string doc;

string processedDoc;

try
{
doc = client.SubscribeDurableTextFrom_testTopic(“myDurablelD”);
processedDoc = processTransaction(doc); / throws an exception if processing fails
needToCommit = true;
client.SendTextTo_testQueue(processedDoc);

catch (Exception ex)

if (needToCommit == false)
client.RollbackSubscribeTopicTransactionFor_testTopic();
if (needToCommit == true)

needToCommit = false;
client.RollbackSubscribeTopicTransactionFor_testTopic();
client.RollbackSendQueueTransactionFor_testQueue();
}
}
finally

if (needToCommit == true)
{
client. CommitSubscribeTopicTransactionFor_testTopic();
client. CommitSendQueueTransactionFor_testQueue();
}
}

Figure 47. An example of using transactions.

48

Version 4.0

USERS’ GUIDE

Deploying Solutions

Once design-time selection of operations is complete, followed by implementation of interfaces and the
completion of the client or service code, the solution is read for deployment. The following are required

for a complete deployment.

B A deployment machine must have the software described in the section Installing, Licensing and

Configuring the JMS Adapter installed and configured.

B Once the target deployment machine has been configured, the finished application and its app .
config file must be moved to the environment and any run-time configuration must be done by

modifying the app . config file.

Run-time Security Credentials

During design-time using the Add Adapter Service Reference dialog, credentials were entered into the
Security tab of the Configure Adapter dialog. For deployment, security credentials must be provided in
either the code making up the application or in the app . config file. Since clear text passwords are a
security risk, the INBridge JMS Adapter for .NET provides a password encryption utility.

The UriEncryptor

The UriEncryptor is shown in Figure 48. The UriEncryptor
can be run from the Start menu.

This is a tool that will encrypt a pass word and build a URI
that can be placed in the app.config file. Alternatively, the
encrypted password may be placed in the application code.

The developer must first enter the pass word, typing it twice
to confirm spelling and case. By clicking the button Encrypt,
the text field Encrypted password will display the pass

word securely encrypted and converted to a hexadecimal
representation. By clicking the button Copy to clipboard, the
user can paste the encrypted pass word into the client code
shown in Figure 49, on the next page. This example

shows accessing the public properties of the generic

class System.ServiceModel.ClientBase.

B Encrypt Password Utility

Enter password

Confim password

| Encryot

Encrypted password
‘4DMBFC5301 341013C2A085C34CR42C5022F06B550307104D5206267970

Copy to clipboard

Enter URI
‘ims:f/madmer:EDED/ ‘

Enter user name
‘niko\ai ‘

Build URI

LRI with user name and encrypted password
‘ims //rikalai:4DA4BFCE301341013C2A085C34C842C 5022F06B550307104D ‘

Copy to clipboard

Reset Fom Close

Figure 48. The UriEncryptor utility

Alternatively, the developer can enter the connection URI from the address element in the app . config
file and the login name and click Build URI to construct a URI containing the login and encrypted pass
word. Clicking the Copy to clipboard button allows the developer to paste the new URI into the app.

config file, Figure 50.

Version 4.0

49

USERS’ GUIDE

namespace ConsoleApplication3
class Program

static void Main(string[] args)
{
JNBridgeJmsAdapterClient client = new JNBridgeJmsAdapterClient();
Il Access the public property defined by the interface of System.ServiceModel.ClientCase
/I Add the security credentials, login name first
client.ClientCredentials.UserName.UserName = “nikolai”;
/I now encrypt the pass word using the UriEncryptor utility and
I paste it into the code, below
client.ClientCredentials.UserName.Password = “34CFOEE3F5B55DAF14B809F7994D05A34AD7BA699546D21C";

client.SendText(“denver_account_g", “Using encrypted passwords”);
string response = client.ReceiveText(“denver_account_q”);

Figure 49. Using login and encrypted pass words in the application code

« Ifthe application is using outbound operations, then the developer may choose to
enter the credentials into either the application code or the app.config file. If the
application is using inbound operations, the credentials must be entered into the app.
config file.

<?xml version="1.0" encoding="utf-8"?>
<system.serviceModel>
<bindings>
<JNBridgeDotNetJMSAdapterBinding>
<binding BcelPath="C:\Program Files\JNBridge\JMSAdapters\jnbin\bcel-5.1-jnbridge.jar’
JnbCorePath="C:\Program Files\UNBridge\UMSAdapters\jnbin\jnbcore.jar”
JvmPath="C:\Program Files\Java\jre1.6.0_01\bin\client\jvm.dIl”
name="JMSAdapterBinding” close Timeout="00:01:00" openTimeout="00:01:00"
receiveTimeout="00:10:00" sendTimeout="00:01:00" AcknowledgeMode="AUTO_ACKNOWLEDGE”
SecurityAuthentication="none” TopicConnectionFactory="JmsTopicConnectionFactory”
QueueConnectionFactory="JmsQueueConnectionFactory” ClassPath="C:\Program...”
JMSScheme="rmi" InitialContextFactory="org.exolab.jms.jndi.Initial ContextFactory”
JmsVendor="Tibco EMS” MessageSelector="" DurableSubscription=""
QueueName=""TopicName="" OffLine="false” RunTime="true” />
</JNBridgeDotNetJMSAdapterBinding>
</bindings>
<client>
<endpoint address= "jms:/nikolai:34CFOEE3F5B55DAF14B809F7994D05A34AD7BA699546D21C@
scriabin:1099/” binding="JNBridgeDotNetJMSAdapterBinding”
bindingConfiguration="JMSAdapterBinding” contract="JNBridgeJmsAdapter”
name="JMSAdapterBinding_JNBridgeJmsAdapter” />
<[client>
</system.serviceModel>
</configuration>

Figure 50. Placing a URI containing a login and encrypted password

50 Version 4.0

USERS’ GUIDE

Tips and Tricks

Use the Generic Operations

Part of the WCF Line-Of-Business Adapter Framework’s appeal is the real-time design capabilities and
the ability to “query” a LOB application for meta-data concerning, for example, its API. The framework
can then create specific “named functions”. This is of marginal use when using JMS. While the adapter
will look for JMS destinations and create “named” operations, only those JMS destinations which reside
in the initial INDI context will result in named operations. Any destinations with a JNDI path will not
be visible in the Add Adapter Service Reference dialog box because most JMS servers, particularly JEE
servers, do not allow browsing of the JNDI tree without special privileges.

Recommendation: stick with the generic functions. Generic functions allow you to parameterize the
destinations—convenient for deployments. So as an example coding a request/response scenario:

class JMSSendTextMain
{
public static JNBridgeJmsAdapterClient client = new JNBridgeJmsAdapterClient();
static void Main(string[] args)
{
client.SendText(args[0], “This is a request message—pretend it's SOAP”);
string response = client.ReceiveText(args[1]);
Console.WriteLine(response);
}
}

Figure 51. Using generic functions

Work off-line

In many cases a developer will be unable to connect to a JMS server when using the Add Adapter Service
Reference plug-in. Because of this, the adapter supports an off-/ine mode which supports only generic
operations. If you wish to work on-line and connect to the JMS server, any exception that is thrown

may be incomplete as a simple error dialog is used by the framework. It is not uncommon to have 3-4
nested exceptions, particularly when the exception is thrown in a J2EE app server’s JVM. Since the
above recommendation is to use the generic functions, then there is no need to actually connect to the
JMS server instance—instead work off-line. If you try and connect and have problems, the limited error
information makes it hard to figure out what’s going on.

Version 4.0 51

USERS’ GUIDE

Debug connection or JNDI problems

Debug by creating a simple .NET console application to send or receive text using the generic operations
to a JMS queue or topic. You can do this by setting the off-line option to t rue in the Configure Adapter

dialog. Once you are in off-line mode, you can choose a simple SendText () operation and generate the
WCEF proxy and app . config file. Place code in Program. cs to instance an adapter client and send text

to a test queue. Remember to edit the app . config file to turn the XML attribute Off line to False.

Build the console app in debug mode and run it in VS. Then any thrown exception will allow access to
all the nested inner exceptions as well as both the .NET-side and J2EE-side stack traces. You’ll be able to
find an inner exception with more germane information. Any possible solutions gleaned from complete
exception information can then be implemented by editing the app . config file and rerunning the test app
in debug mode.

When working on-line with the Add Adapter Service Reference design-time tool

If you ignore these practical suggestions regarding working off-line, be forewarned that if you have
connection problems from, for example, typos, pointing to the wrong JAR files, pointing to the wrong
connection factory or pointing to the wrong JVM, then you might have to exit Visual Studio, restart it,
correct the error and try again. Visual Studio never unloads assemblies or dlls once they have been loaded
by a plug-in. You must exit VS and restart it in order to unload the assemblies and dlls. This is because

a Java Virtual Machine thread is part of the Visual Studio process when using the adapter during design-
time. Once a JVM has been instanced (only one per process), it cannot be reconfigured.

52

Version 4.0

USERS’ GUIDE

Version 4.0 53

	How to use this guide
	Additional resources
	About the example code
	Overview of the JNBridge JMS Adapter for .NET
	How it works
	Installing, Licensing and Configuring the JMS Adapter
	Supported Platforms for JNBridge JMS Adapter for .NET
	Target Machine Prerequisites
	Development Environment Prerequisites
	Installing the JMS Adapter
	Troubleshooting installation exceptions
	Configuring .NET 4.0 support
	Licensing
	License files
	Licensing and application configuration files
	Evaluation licenses
	On-line activation
	Off-line activation
	License managers
	Getting Started: A simple console application
	Configuring the JNBridge JMS Adapter for .NET
	Access privileges
	64-bit vs. 32-bit platforms
	32-bit platforms
	64-bit platforms
	Using the Design-Time Tool
	Opening the Add Adapter Service Reference dialog
	Choosing the JNBridge JMS Adapter for .NET
	Connecting to a JMS Server
	Security tab
	URI Properties tab
	Binding Properties tab
	Creating a C# client API class
	Selecting operations
	Generate client classes
	JMS Adapter Design-Time Configuration
	Security Properties
	URI Properties
	Host property
	Port property
	Binding Properties
	JMS Properties
	JNBridge properties
	Behavior properties
	Configuring Java when using the Binary TCP bridge
	Inbound Service properties
	General properties
	General and Specific Timeouts
	Outbound Operations
	Generic and Named Operations
	Text, Byte and Map Message Operations
	Binary Operations: signed vs. unsigned bytes
	Map Operations
	Setting JMS Message Headers
	Setting delivery delay in a JMS Message Header
	Using Message Selectors
	Using Durable Subscriptions
	Unsubscribing from a durable subscription
	Using Durable Shared Subscriptions
	Blocking and Asynchronous Operations
	General and Specific Time-outs
	Asynchronous Operations
	Inbound Operations and Services
	Inbound Operations
	Configuring Inbound operations
	Using an Exception Listener Inbound Service
	Transactions
	Transaction Operations
	Enable Transactions Operations
	Commit Transaction Operations
	Rollback Transaction Operations
	Deploying Solutions
	Run-time Security Credentials
	The UriEncryptor
	Tips and Tricks
	Use the Generic Operations
	Work off-line
	Debug connection or JNDI problems
	When working on-line with the Add Adapter Service Reference design-time tool

