

Demo: Calling a Java Logging Package from .NET

Version 12.0

jnbridge.com

JNBridge, LLC
jnbridge.com

COPYRIGHT © 2001–2025 JNBridge, LLC. All rights reserved.

JNBridge is a registered trademark and JNBridgePro and the JNBridge logo are trademarks of JNBridge, LLC.

Java is a registered trademark of Oracle and/or its affiliates. Microsoft, Visual Studio, and IntelliSense are
trademarks or registered trademarks of Microsoft Corporation in the United States and other countries. Apache is
a trademark of The Apache Software Foundation.

All other marks are the property of their respective owners.

April 13, 2021

Demo: Calling a Java logging package from .NET

 3

Introduction
This document shows how JNBridgePro can be used to construct a .NET console application that
calls Java classes. The reader will learn how to generate .NET proxies that call the Java classes, create
.NET code that calls the proxies and, indirectly, the corresponding Java classes, and set up and run the
code.

In the example, JNBridgePro is used to allow .NET code to call log4j, a Java-based logging package
developed as part of the Apache project. There are a number of reasons one might want to do such a
thing. The developer may feel that this package is the best one for the job. Another, more compelling
reason, might be that the developer is integrating .NET classes with existing Java classes that already
use log4j to log events, and it would be desirable to have the Java- and .NET-originated logging
messages go to the same output. Additionally, use of log4j by both Java and .NET code would allow
logging to be controlled from a single configuration file, rather than requiring Java and .NET logging
to be controlled from separate configuration files.

In this example, we assume an existing Java class, loggerDemo.JavaClass, that includes an instance
method doIt() that sends a log message to log4j. We will create a .NET-based class,
com.jnbridge.demos.logging.DotNetClass that includes its own instance method f() that also sends a
log message to log4j. A .NET-based driver method calls both JavaClass and DotNetClass, and we
will see how both Java- and .NET-originated logging messages are displayed on the same console
output.

Generating the proxies
While this example uses the standalone proxy generation tool, you can also use the Visual Studio
plug-in, and the example figures will look very much the same.

The first step in the process is to generate proxies for the classes in the log4j package, and for
loggerDemo.JavaClass. Start by launching JNBProxy, the GUI-based proxy generator, then selecting
“Create new .NET  Java project” when the “Launch JNBProxy” form is displayed (Figure 1). After
doing this, the main form of JNBProxy is displayed (Figure 2).

Demo: Calling a Java logging package from .NET

 4

Figure 1. JNBProxy launch form

Figure 2. JNBProxy

Next, add the files log4j.jar and log4j-core.jar to the class path to be searched by JNBProxy. (You can
download the log4j JAR files from http://jakarta.apache.org/log4j/docs/index.html.) Also add the
folder in which the folder loggerDemo (which contains JavaClass.class) is to be found. Use the menu
command Project→Edit Classpath…. The Edit Class Path dialog box will come up, and clicking on the
Add… button will bring up a dialog that will allow the user to indicate the paths of the Jar and class
files (Figure 3).

http://jakarta.apache.org/log4j/docs/index.html

Demo: Calling a Java logging package from .NET

 5

Figure 3. Adding a new classpath element

When all the necessary elements of the classpath are added, the Edit Class Path dialog should contain
information similar to that shown in Figure 4.

Demo: Calling a Java logging package from .NET

 6

Figure 4. After creating classpath

The next step is to load the classes from each of the Jar files, and to add JavaClass. For the Jar files,
use the menu command Project→Add Classes from JAR File… for each Jar file. For a single class such
as JavaClass, use the menu command Project→Add Classes from Classpath… and enter the fully
qualified class name loggerDemo.JavaClass (Figure 5).

Demo: Calling a Java logging package from .NET

 7

Figure 5. Adding a class from the classpath

Loading the classes may take a few minutes. Progress will be shown in the output pane in the bottom
of the window, and in the progress bar. When completed, the classes in the log4j Jar files and
loggerDemo.JavaClass will be displayed in the Environment pane on the upper left of the JNBProxy
window (Figure 6). Note that JNBProxy will warn us that we are missing a number of classes relating
to JMS (Java Messaging Service), XML, and JavaMail. Since we are not going to use these
capabilities of log4j, we can safely ignore this warning.

Demo: Calling a Java logging package from .NET

 8

Figure 6. After adding classes

We wish to generate proxies for all these classes, so when all the classes have been loaded into the
environment, make sure that each class in the tree view has a check mark next to it. Quick ways to do
this include clicking on the check box next to each package name, or simply by selecting the menu
command Edit→Check All in Environment. Once each class has been checked, click on the Add button
to add each checked class to the list of proxies to be exposed. These will be shown in the Exposed
Proxies pane (Figure 7).

Demo: Calling a Java logging package from .NET

 9

Figure 7. After adding classes to Exposed Proxies pane

We are now ready to generate the proxies. Select the Project→Build… menu command, and choose a
name and location for the assembly (.dll) file that will contain the generated proxies. The proxy
generation process may take a few minutes, and progress and other information will be indicated in
the Output pane. In this example, we will call the generated proxy assembly logging.dll.

Using the proxies
Now that the proxies have been generated, we can use them to access Java classes from .NET.
Launch Visual Studio .NET (note that this development can also be done using the .NET SDK), and
create a new C# console application project. Add references to the assemblies logging.dll (the one just
generated) and jnbshare.dll (distributed with JNBridgePro). Add to your project the file
jnbauth_x86.dll or jnbauth_x64.dll or both (depending on whether the application will run as a 32-bit
process, a 64-bit process, or either one). When adding the jnbauth dll, make sure that its properties
settings include “Copy always.” Add the file app.config to the project. It is an application
configuration file that configures the .NET side of JNBridgePro. You may want to examine the
settings (it is set to communicate with the Java side using tcp/binary communications, where the Java
side is on the same machine as the .NET side and is listening on port 8085). Make sure that,
depending on whether you are using .NET Framework 2.0 or 4.0, you have commented and
uncommented the appropriate sections of the configuration file. Next, add a new class and enter the
following C# code:
using System;
using org.apache.log4j;
using java.lang;
using loggerDemo;

namespace com.jnbridge.demos.logger
{

Demo: Calling a Java logging package from .NET

 10

 class LoggerDemo
 {
 static Category cat
 = Category.getInstance("com.jnbridge.demos.logger.LoggerDemo");

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 BasicConfigurator.configure();

 cat.info(new JavaString("Entering application"));
 DotNetClass dotNetClass = new DotNetClass();
 JavaClass javaClass = new JavaClass();
 for (int i = 0; i < 5; i++)
 {
 dotNetClass.f();
 javaClass.doIt();
 }
 cat.info(new JavaString("Exiting application"));
 }
 }

 public class DotNetClass
 {
 static Category cat =
 Category.getInstance("com.jnbridge.demos.logger.DotNetClass");

 public void f()
 {
 cat.debug(new JavaString("Logged from .NET"));
 }
 }
}

Note that strings passed to the info() and debug() methods need to be wrapped in a
java.lang.JavaString() object. This is because info() and debug() both expect a parameter of class
java.lang.Object, and the .NET string is not a subclass of java.lang.Object, while java.lang.JavaString
is. See the user’s manual for more details.

The proxies for the Java objects in log4j are used exactly as the original objects would be used in
Java. Note the following items of interest:

• Proxies for the Java classes have namespaces identical to the package names of the original Java
classes. Thus, we simply import the namespaces org.apache.log4j, java.lang, and loggerDemo,
and afterwards can use the names of the Java classes.

• Proxies for the Java classes Category, BasicConfigurator, and JavaClass are used in exactly the
same way as the original Java classes would have been used.

• The .NET class DotNetClass’s calls to the logger object cat will cause messages to be written to
the same output as the messages logged by JavaClass.

• When typing in the calls to the Java objects, Visual Studio’s IntelliSense facility will offer to
complete the names of method calls in the same way that it would for calls to .NET objects
(Figure 8), and will provide information on number and types of parameters.

Demo: Calling a Java logging package from .NET

 11

Figure 8. IntelliSense method completion for Java calls

After entering the code, build the project to obtain the executable.

Running the program
Running the program is simple. Make sure that JNBridgePro is properly configured on the .NET side
(i.e., app.config has been added to the project – upon building the solution, app.config will be copied
to your project’s build folder and renamed projectName.exe.config, assuming your exe file is
projectName.exe) and on the Java side (i.e., that there is a copy of the properties file
jnbcore.properties in the same folder as jnbcore.jar), and that the .NET and Java side configurations
agree on the protocol and port to be used. Then, start up a JVM. Assuming that jnbcore.jar, log4j.jar,
log4j-core.jar, jnbcore_tcp.properties and loggerDemo\JavaClass.class are in the same folder, we can
start up the Java-side in a console window as follows:
java –cp “.;log4j.jar;log4j-core.jar;jnbcore.jar” com.jnbridge.jnbcore.JNBMain
/props ".\jnbcore_tcp_no_security.properties"

The above command line will start up a Java side without the SSL and class whitelisting security
features. To use these security features with TCP/binary communications, see the sections “Secure
communications using SSL” and “Class whitelisting,” below.

In a separate console window, start up the .NET program. The Java console window will display
logging messages originating on both the .NET and the Java side (Figure 9). Note that Figure 8(b)
contains logging output that originated on both the Java and .NET sides.

Demo: Calling a Java logging package from .NET

 12

Figure 9. (a) Running the .NET-side. (b) Running the Java side.

Using shared-memory communication. It is possible to run the Java side in the same process as the
.NET side, using a shared-memory communication mechanism. This has several advantages: it’s
much faster than the socket-based tcp/binary mechanism, and it’s not necessary to explicitly start up
the Java side – it’s automatically done before the first call to a proxy. To use shared memory, stop the
.NET and Java sides (if they’re still running), then open the app.config application configuration file.
Comment out the <dotNetToJavaConfig> element whose “scheme” value is “jtcp,” and uncomment

Demo: Calling a Java logging package from .NET

 13

the <dotNetToJavaConfig> element whose “scheme” value is “sharedmem.” You will need to edit
the “jvm,” “jnbcore,” “bcel,” and “classpath” values to reflect the locations on your machine of
jvm.dll, jnbcore.jar, bcel-6.10.0.jar, and the jar files log4j.jar, log4j-core.jar, and the path to the folder
containing the loggerDemo folder (which in turn contains JavaClass.class). Once you have made the
changes, build the project and start it. It will run as before, even though the Java side has not been
explicitly started, since the Java side is now running inside the .NET process.

Class whitelisting. When using TCP/binary communications, the Java side can be configured to only
allow requests from the .NET side that reference specific Java classes. This prevents the possibility of
malicious clients accessing sensitive APIs (which need not even have been proxied). The file
jnbcore_tcp_no_security.properties contains the following properties to activate the class whitelist
feature:

javaSide.useClassWhiteList=true

This is the default value and may be omitted. To turn off class whitelisting, the property must be
explicitly set to false.

javaSide.classWhiteListFile=./classWhiteList.txt

The property above is the path to a text file each of whose lines is a class that can be accessed from
the .NET side. If the .NET side client attempts to access a class not in the whitelist (or one of the
short list of classes that is always whitelisted), an exception will be thrown. The supplied whitelist file
contains the following classes that are directly accessed from the .NET side:

org.apache.log4j.Category
org.apache.log4j.BasicConfigurator
loggerDemo.JavaClass

The class whitelist can be easily derived by examining the .NET side code that calls the proxies. For
each proxy class that is called, add that class or interface name to the whitelist.

For more information on class whitelisting, see the Users’ Guide.

Secure communication using SSL. It is possible to configure secure communications between the
.NET and Java sides through SSL (secure sockets library). SSL in JNBridgePro provides data
encryption, message integrity, and server communications. It is only available when using tcp/binary
communications (shared memory is inherently secure). For more information on secure
communications, see the Users’ Guide.

Please note that the following instructions use certificates that we supply. These certificates are for
instructional use only; you should NOT use them in production scenarios. For production
scenarios, you should supply your own certificates.

To use SSL, first make sure that the example is configured to use tcp/binary communications without
SSL (that is, the appropriate useSSL properties are set to false), and that this is working.

Once it is established that the application works with regular tcp/binary communications, we
configure for SSL. First, add the attribute useSSL=”true” to the <dotNetToJavaConfig> element in
the app.config file. Also, add the javaSide.useSSL=true property to the jnbcore.properties file that
you will be using when you run the Java side. To turn SSL off, these properties may be omitted (the
default is false, or explicitly set to false.

On the .NET side, in the app.config file, comment out the version of <dotNetToJavaConfig> without
the security features, and uncomment the version of <dotNetToJavaConfig> with the security
features. Note the following elements:

Demo: Calling a Java logging package from .NET

 14

• useSSL – this indicates that SSL is being used, and should be set to true

• clientCertificateLocation – this is the path to the .NET side’s client certificate, and is used to
authenticate itself to the server side, and also for encryption. This version of the client
certificate must contain the public/private key pair, and should be password protected.

• clientCertificatePassword – this is the password of the client certificate.

• sslAlternateServerNames – this is a semicolon-separated list of server names that may be
accepted when the server authenticates itself to the client. For example, in this case the .NET
client is accessing the Java server on the same machine, so it is attempting to contact
“localhost”. However, the server certificate is for a server named “myServer” (the value in
the CN/Common Name field of the certificate). Unless myServer appears in the
sslAlternateServerNames list, the connection will fail.

On the Java side, we have the following additional properties:

• javaSide.keyStore – this is the path to a Java keystore (.jks) file containing the public/private
key pair for the Java-side server’s certificate.

• javaSide.keyStorePassword -- this is the password of the keystore file.

• javaSide.trustStore – this is another .jks file containing a list of trusted certificates. You
should place the authorized .NET sides’ certificates in this folder.

• javaSide.trustStorePassword – this is the password of the truststore file.

Since the Java-side server certificate (in this case, myserver.cer) is a self-signed certificate, we have
to explicitly instruct the .NET side to trust it. To do so, copy the certificate to the .NET-side machine
and install it into the certificate store by right-clicking on the .cer file and selecting Install…. In the
resulting wizard, choose to install the certificate in either the machine store or the user store. In the
next step, when asked where the certificate should be stored, select either “Trusted Root Certification
Authorities” or “Third-Party Root Certification Authorities.” After that selection, follow all remaining
instructions.

At this point, rebuild the .NET side, and start the Java side with the command-line:
java –cp “.;log4j.jar;log4j-core.jar;jnbcore.jar” com.jnbridge.jnbcore.JNBMain
/props ".\jnbcore_tcp_with_security.properties"

Run the .NET side. It should work as previously, where security features were not used, except in this
case the .NET-side client and the Java-side server are both authenticated, and communications are
encrypted.

Summary
The above example shows how simple it is to integrate Java and .NET code and to run the resulting
program. The example above shows how a program can log information from both Java and .NET
using a common logging infrastructure. Such a strategy greatly simplifies development and
debugging of code running on both Java and .NET platforms.

Creating this program was accomplished in three stages:

• In the first stage, proxies were generated allowing access by .NET classes to the Java classes. The
proxies were generated using JNBProxy, a visual tool that allows developers a wide variety of
strategies for determining which Java classes are to be exposed to access by .NET.

Demo: Calling a Java logging package from .NET

 15

• In the second stage, the .NET assembly containing the proxies was linked to the .NET
development project and .NET code accessing the Java classes was developed. .NET classes can
access Java classes transparently, as if the Java classes were themselves .NET classes. Nothing
special or additional needs to be done to manage Java-.NET communications or object lifecycles.
Benefits provided by Visual Studio .NET, such as IntelliSense, are also available when writing
.NET code that accesses Java classes.

• In the third stage, the integrated .NET and Java code is run. All that is required is to start a Java-
side containing the Java code to be accessed and an additional support module (jnbcore.jar). Once
the Java-side is started, the user simply runs the .NET program that will access the Java objects.

By allowing Java and .NET code to interoperate, JNBridgePro helps developers derive full value
from their existing Java code, even as they take advantage of Microsoft’s .NET platform.

	Demo: Calling a Java Logging Package from .NET
	Introduction
	Generating the proxies
	Using the proxies
	Running the program
	Summary

