

Demo: Embedding Java GUI elements inside a
Windows Presentation Foundation application

Version 11.0

jnbridge.com

JNBridge, LLC
jnbridge.com

COPYRIGHT © 2002–2019 JNBridge, LLC. All rights reserved.

JNBridge is a registered trademark and JNBridgePro and the JNBridge logo are trademarks of JNBridge, LLC.

Java is a registered trademark of Oracle and/or its affiliates. Microsoft, Visual Studio, and IntelliSense are
trademarks or registered trademarks of Microsoft Corporation in the United States and other countries. Apache is
a trademark of The Apache Software Foundation.

All other marks are the property of their respective owners.

October 7, 2020

Demo: Embedding a Java GUI element inside a WPF application

 3

Introduction
This document shows how a Java GUI element (an AWT or Swing component – SWT is not currently
supported in this scenario) can be embedded inside a Windows Presentation Foundation (WPF)
application. If you are unfamiliar with JNBridgePro, we recommend that you work through one of
the other demos first. We recommend working through the “Log demo,” which will work through the
entire process of generating proxies and setting up, configuring, and running an interop project. This
current document assumes such knowledge, and is mainly a guided tour of the code and configuration
information necessary to embed Java GUI elements inside GUI-based WPF applications.

The Java GUI component
In this example, we have provided a simple AWT-based Java component, jInN.JavaComponent.
(Swing components will work as well, but embedding SWT components inside WPF applications is
not currently supported.)

public class JavaComponent extends Panel {
 public TextField javaTextBox;
 Button btn;

 public JavaComponent() {
 setSize(400, 100);
 setLayout(new GridBagLayout());
 add(new Label("Java component: "));
 javaTextBox = new TextField(30);
 btn = new Button("SEND");
 add(javaTextBox);
 add(btn);
 }

 public void addActionListener(ActionListener l)
 {
 btn.addActionListener(l);
 }
}

Any Java GUI component to be embedded inside a WinForm must be derived from
java.awt.Component. The JavaComponent class above is derived from java.awt.Panel, which is a
subclass of java.awt.Component. JavaComponent contains a TextField and a button; the TextField is
public, so outside code can get and set the field’s text, and a public method makes it possible to add
an ActionListener for the button. JavaComponent should look like the following:

Demo: Embedding a Java GUI element inside a WPF application

 4

Generating the proxies
We have provided a proxy assembly javaComponentProxies.dll, which contains the proxies for
jInN.JavaComponent, plus all supporting classes. However, it is straightforward to generate the
proxies oneself.

Embedding the Java component inside the Windows Form
We have prepared a WPF application to contain the embedded Java component:

Note that the Window contains a WPF WrapPanel component, named javaHolder, which is the same
size as the Java component, which will be embedded inside the panel.

Inside the window’s constructor, we have added the following lines:
jInN.JavaComponent jcp = new jInN.JavaComponent();
this.javaHolder.Children.Add(new JavaWPFControl(jcp, 400, 100));

The code first instantiates the proxy for the Java component (JavaComponent), then embeds it inside
a special wrapper, com.jnbridge.embedding.JavaWPFControl, which inherits from
System.Windows.Forms.Integration.WindowsFormsHost, and which allows the Java component to
be used wherever a WPF Control is expected. Note that the Java component’s size (400 pixels wide
and 100 pixels high) must be supplied to the JavaControl constructor. Finally, the wrapped Java
component is added to the javaHolder panel.

We have also created a callback class that implements java.awt.event.ActionListener, and which will
be executed whenever the Java component’s button is clicked:

 [AsyncCallback("java.awt.event.ActionListener")]
 public class DotNetActionListener : ActionListener
 {
 private java.awt.TextField javaTextBox;
 private TextBox wpfTextBox;

 public DotNetActionListener(java.awt.TextField jTB, TextBox dNTB)
 {
 javaTextBox = jTB;
 wpfTextBox = dNTB;
 }

 private delegate void setTextBox(string s);
 private void setTextBoxProc(string s)
 {
 wpfTextBox.Text = s;
 }

Demo: Embedding a Java GUI element inside a WPF application

 5

 public void actionPerformed(ActionEvent p1)
 {
 string s = javaTextBox.getText();
 wpfTextBox.Dispatcher.Invoke(
 new setTextBox(setTextBoxProc), new object[] { s });
 }
 }

The callback code extracts the text from the Java TextField, and writes it to the .NET TextBox. Note
that the assignment to wpfTextBox must be done inside a call to Invoke() so that it is executed within
wpfTextBox’s owning thread. This is important, and an exception will result if the assignment is
made directly within the listener and the listener thread. The callback is instantiated and registered
with the Java component as an ActionListener by the following line in the form’s constructor:

 jcp.addActionListener(
 new DotNetActionListener(jcp.javaTextBox, wpfTextBox));

Configuring and running the application
The project is constructed in the same way as other .NET-to-Java interop projects. The
communications mechanism must be shared memory:

 <jnbridge>
 <dotNetToJavaConfig scheme="sharedmem"
 jvm="C:/Program Files (x86)/Java/jre6/bin/client/jvm.dll"
 jnbcore="C:/Program Files (x86)/JNBridge/JNBridgePro v11.0/jnbcore/jnbcore.jar"
 bcel="C:/Program Files (x86)/JNBridge/JNBridgePro v11.0/jnbcore/bcel-5.1-
jnbridge.jar"
 classpath="../../../Java"
 />
 </jnbridge>

The one other special consideration is that copies of the files jawt.dll and jnbjavaentry.dll must be
placed in the same folder as the .NET .exe file. If either is not there, an exception will be thrown. A
copy of jawt.dll can be found in the jre\bin folder (if you are using a JDK) or in the bin folder (if you
are using a JRE).

Demo: Embedding a Java GUI element inside a WPF application

 6

When the .NET application is run, the Java component appears embedded in the WinForms
application, and when text is entered in the Java component’s text field and the SEND button is
clicked, the text will appear in the .NET form’s text box, illustrating how the .NET and Java GUI
elements communicate.

Summary
The above example shows how simple it is to embed a Java GUI component inside a WPF
application. This embedding can be accomplished in four steps:

• Proxy the Java component and the supporting classes

• Create a panel of the proper size in the WPF application.

• Write code to wrap the Java component’s proxy in the special JavaWPFControl wrapper
class, and add that JavaWPFControl object to the WPF panel.

• Create .NET classes to implement any ActionListeners, and register them with the Java
component’s proxy.

	Demo: Embedding Java GUI elements inside a Windows Presentation Foundation application
	Introduction
	The Java GUI component
	Generating the proxies
	Embedding the Java component inside the Windows Form
	Configuring and running the application
	Summary

